NORTHEAST PACIFIC ALBACORE OCEANOGRAPHY SURVEY, 1961 by R. W. Owen, Jr. Marine Biological Laboratory LIBRARY JAN 2 7 1964 WOODS HOLE, MASS. UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE #### UNITED STATES DEPARTMENT OF THE INTERIOR, Stewart L. Udall, Secretary FISH AND WILDLIFE SERVICE, Clarence F. Pautzke, Commissioner BUREAU OF COMMERCIAL FISHERIES, Donald L. McKernan, Director ## NORTHEAST PACIFIC ALBACORE OCEANOGRAPHY SURVEY, 1961 by R. W. Owen, Jr. United States Fish and Wildlife Service Special Scientific Report--Fisheries No. 444 > Washington, D.C. November 1963 #### CONTENTS | | Page | |------------------------------------|------| | Introduction | 1 | | Observations and field procedures: | | | Physical and chemical methods | 2 | | Biological methods | 2 | | Laboratory procedures | 3 | | Acknowledgements | 16 | | Scientific personnel | 16 | | Literature cited | 16 | Figure 1.--Cruise track and station positions on John N. Cobb Cruise 51, July 1961. "H" designates hydrographic stations, "P" designates productivity stations. Figure 1.--Cruise track and station positions on John N. Cobb Cruise 51, July 1961. "H" designates hydrographic stations, "P" designates productivity stations. ## NORTHEAST PACIFIC ALBACORE OCEANOGRAPHY SURVEY, 1961 by R. W. Owen, Jr. Fishery Biologist Research Bureau of Commercial Fisheries U.S. Fish and Wildlife Service San Diego, California #### **ABSTRACT** Oceanographic and biological data obtained on the first of a series of albacore oceanography cruises are presented in this report, together with a statement of the methods employed. The cruises are a cooperative venture between the Bureau of Commercial Fisheries Biological Laboratory, San Diego, Calif., and the Exploratory Fishing and Gear Research Base, Seattle, Wash. The first cruise was made during July 1961 between latitudes 420 N. to 480 N. and longitudes 1250 30' W. to 1320 W. Measured were salinity, temperature, and oxygen concentration from 0 to 600 meters, zooplankton standing crop from 0 to 140 meters, surface phytoplankton pigments and productivity, and incoming solar radiation. Other activities included trolling and gill netting for albacore, logging weather observations, and collecting with nightlights. #### INTRODUCTION The present work is a report on the first of a series of annual oceanography cruises planned for the region off the coasts of Washington and Oregon at the time of year when albacore, *Thunnus alalunga* (Bonnaterre), usually are available. The survey was a cooperative venture of the Bureau of Commercial Fisheries Biological Laboratory, San Diego, Calif., with the Bureau's Exploratory Fishing and Gear Research Base, Seattle, Wash. The vessel used was M/V *John N. Cobb*, operated by the latter group. The principal objective of the cruise was to provide data for investigating relation- ships between availability of albacore and mensurable features of the environment. In Washington-Oregon coastal waters, marked fluctuations in the annual commercial catch of albacore have characterized this fishery since its inception in 1937, and apparently are related to variable features of the oceanic environment (Alverson, 1961; Johnson, 1962). Exploratory fishing for albacore was conducted in this area from 1949 to 1952 and in 1956 as part of the North Pacific Exploratory Fishing Program of the Bureau of Commercial Fisheries (Powell and Hildebrand, 1950; Powell, Alverson, and Livingstone, 1952; Schaefers, 1952 and 1953; Powell, 1957). The Fish Commission of Oregon made independent exploratory fishing and tagging cruises in 1959, 1960, and 1961.¹ Albacore trolling has been conducted on oceanographic survevs Washington-Oregon coast. In 1955 and 1956 oceanographic and biological data were collected from the British Columbia, Washington, Oregon, and northern California coastline out to about longitude 145° W. (Holmberg²: Love, 1957). In the fall of 1956, vessels of the Bureau of Commercial Fisheries Pacific Oceanic Fishery Investigations collected data from longitude 1500W, to the American Pacific coast between latitudes 310 N. and 460 N. (Callaway, 1957). The Northeastern Pacific Albacore Survey (NEPAS) operated in 1957 between latitudes 35° N. and 47° N. (Callaway and McGary, 1959; Graham, 1959). In 1958 the area off Washington and Oregon was surveyed as part of the International Geophysical Year (Fleming and staff, 1959). On Exploratory Cruise 51 the M/V John N. Cobb departed Seattle on July 10, 1961, and proceeded to the cruise track (fig. 1). The first hydrographic station was occupied on July 11 and the last on July 26, 1961. During the cruise, the Cobb drifted at night. The vessel docked in Astoria, Oreg., on July 27. #### OBSERVATIONS AND FIELD PROCEDURES #### Physical and Chemical Methods Hydrographic stations usually were occupied at noon and shortly after dark at intervals of about 48 nautical miles (fig. 1, table 1). Casts of 18 Nansen bottles each were made at 23 stations to depths of about 600 meters, and casts of 9 bottles each were made at 2 stations to about 120 meters depth. Results of physical and chemical measurements are presented in figures 2-10 and in tables 2-4. Nansen bottle spacings were determined by characteristics of bathythermograph (BT) ¹ Robert J. Ayers. 1959, 1960, 1961. Unpublished reports of the Fish Commission of Oregon. traces obtained at each station and by anticipated wire angles. Because the hydrographic wire was of small diameter (1/8 inch), two casts were made at each station: a shallow cast to sample from 0 to 125 meters and a deep cast to sample from 125 to 600 meters. Paired protected reversing thermometers were attached to each bottle, and most bottles sampling below 100 meters were equipped with unprotected reversing thermometers. Samples were drawn for salinity and oxygen analysis. Oxygen determinations were made aboard the Cobb, and salinity determinations were made at the Department of Oceanography, University of Washington. Bathythermograph casts to 900 feet were made at each hydrographic station and at points about halfway between stations (fig. 1, table 3). The vessel was stopped for all BT casts. Observations were made in accordance with U.S. Navy Hydrographic Office Publication No. 606-c (1956). Drift bottles were released at 19 stations (tables 1 and 2). These were provided by Hans T. Klein, Data Collection and Processing Group, Scripps Institution of Oceanography. No recoveries had been received as of March 1962. Continuous recording of incident solar radiation was made throughout the cruise. The sensor used was a gimbal-mounted pyranometer using Parsons' Black as the "black body." A strip-chart recorder provided the trace (table 4). #### Biological Methods Surface measurements of primary production using the C^{14} method were made at 21 stations. These were often coincident with hydrographic station locations but are labelled independently of hydrographic stations due to occasional differences in time and location (fig. 11, tables 1 and 5). The method employed is a modification of those described by Steemann Nielsen (1952), Strickland (1960), and Strickland and Parsons (1960). Water samples were obtained with a plastic bucket from the ²Edwin K. Holmberg. 1956. Unpublished report of the Fish Commission of Oregon. sea surface at sunrise and local noon. Water was placed in clear ("light") and opaque ("dark") 125-ml. glass-stoppered Pyrex bottles. Each sample was inoculated with 1 ml. of C^{14} solution (1.7 microcuries/ml.) and trailed from sunrise to local apparent noon or from local apparent noon to sunset. After incubation, samples were immediately filtered through 25-mm. membrane filters (0.30-micron (μ) \pm .02- μ pore size - manufacturer's rating). The filters were rinsed with 2 ml. of 0.05 N HC1 and placed in a vacuum dessicator for counting ashore. Surface chlorophyll samples were obtained at 28 stations (fig. 12, tables 1 and 6). Three surface water samples of 2.0-3.0 liters each were taken at the same time that water was taken for primary production measurement. These were filtered immediately through 47-mm. membrane filters $(0.45-\mu\pm.02-\mu$ pore size). Small amounts of magnesium carbonate were added during filtration. The filters were dessicated and frozen for shore analysis of chlorophyll <u>a</u>. Oblique zooplankton hauls were made at 10 noon stations, coincident with hydrographic and productivity stations (tables 7 and 8). Samples were collected with a 1-meter net identical to those used on cruises of the California Cooperative Oceanic Fisheries Investigations (e.g., Thrailkill, 1956) and of the Pacific Oceanic Fisheries Investigations (King and Demond, 1953). Calibration of the water-flow meter was done before and after the cruise. The meter was affixed to a towing frame and hauled back and forth through a 50-ft, water course at 13 speeds from 1.3 to 3.6 ft./sec. Revolutions/sec. recorded at each speed, averaged to cancel current effects, were plotted against distance traversed/revolution to establish a calibration curve. Water volumes recorded on net hauls were calculated by multiplying the net-mouth area by the distance traversed as indicated by the flow meter. No extensive clogging of the plankton net was evident during the cruise. Trolling for albacore was conducted between stations at 6 to 8 knots with six to eight lines. Feather jigs were used, supplemented occasionally by bone-type jigs. About 205 hours were spent trolling, generally from one-half hour before sunrise to one-half hour after sunset. Sixty albacore were caught (fig. 13, table 9); six of these were released wearing tags supplied by the Fish Commission of Oregon. Blood samples were taken from 16 albacore for serological analysis by Lucian Sprague of the Bureau of Commercial Fisheries Biological Laboratory, Honolulu. Nightly sets of eight shackles (400 fathoms) of gill nets were made between July 11 and July 17 (table 10). On the
morning of July 18, the nets could not be found; probably the nets sank under a load of blue sharks, *Prionace glauca* (Linnaeus). Many had been enmeshed on previous sets. Two albacore and one bluefin tuna, *Thunnus thynnus* (Linnaeus), were caught on the set of July 14-15 at station H-7 (fig. 13). #### LABORATORY PROCEDURES Salinity determinations were made through the courtesy of the Department of Oceanography, University of Washington, on a conductivity bridge calibrated against Copenhagen Water (figs. 3, 6, and 9; table 2). Accuracy is better than ± 0.005 %. Oxygen determinations (table 2) were made on board the vessel by the Winkler method according to procedures outlined by Wooster³ and Chow.⁴ Chlorophyll samples were transported under refrigeration to San Diego for analysis (fig. 12, table 6). The method of analysis used was that described by Holmes and others (1958), except that extraction in acetone was allowed to proceed for 16-18 hours. Equations used in calculation of chlorophyll <u>a</u> are those of Richards with Thompson (1952). ³ Warren S. Wooster. 1950. Methods in chemical oceanography employed in the California Cooperative Sardine Research Program. Technical Report of 25 November 1950, Scripps Institution of Oceanography, 27 p. Mimeographed. ⁴ T. J. Chow. 1961. Field guide for the STEP-I Expédition. Scripps Institution of Oceanography, 35 p. Mimeographed. Figure 2,--Horizontal distribution of temperature at 10 m. Contour interval is 0,5°C. Figure 3,--Horizontal distribution of salinity at 10 m. Contour interval is 0.5 $\%_{\rm o}$. Figure 4.--Horizontal distribution of oxygen concentration at 10 m. Contour interval is 0.5 ml./1. Figure 5.--Horizontal distribution of temperature at 100 m. Contour interval is 0.25° C. Figure 6.--Horizontal distribution of salinity at 100 m. Contour interval is 0.1 % o. Figure 7.--Horizontal distribution of oxygen concentration at 100 m. Contour interval is $0.25 \text{ ml}_{\bullet}/l_{\bullet}$ Figure 8.--Vertical profiles of temperature. Profiles are along track lines defined by station numbers at top of each. Contour interval is $1\,^{\circ}$ C. Figure 9.--Vertical profiles of salinity. Profiles are along track lines defined by station numbers at top of each. Contour interval is 0.25 %0 except in shaded portions where contour interval is 1 %0. Figure 10_{\circ} --Vertical profiles of oxygen concentration. Profiles are along track lines defined by station numbers at top of each. Contour interval is $1 \text{ m1}_{\circ}/1_{\circ}$ except for dashed line. Figure 11.--Primary productivity at sea surface. Figure 12.--Chlorophyll a concentrations at sea surface. Figure 13.--Albacore tuna catches made with trolling gear and gill nets. Numbers above or beside track line segments are July dates. Circled numbers on track line segments represent catch location and number of fish caught. Fish were troll-caught except as noted. Measurements of primary production, estimated by rates of carbon fixation by phytoplankton, were made using standardized C¹⁴ solution (fig. 11, table 5). The solution was made up in the manner described by Steemann Nielsen (1952), except that triple glass-distilled water was used as the carrier instead of artificial sea water. The solution was adjusted to pH 9.0, filtered through a membrane filter and placed in clean 5-ml. ampoules, which then were sealed and autoclaved. Filters retaining the incubated phytoplankton were given to the Department of Oceanography. University of Washington, for counting. The activity on the filter was measured with a continuous gas flow geiger counter equipped with a mylar end-window. Dark bottle uptake measurements indicated an accumulated bacterial population and were not used in calculations of primary productivity. Light bottles were scrubbed daily and had no such accumulation. Homes et al (1958; p. 8) previously found that ". . . dark bottle uptake averages 10-13% of the uptake in illuminated bottles " His observation is supported by initial measurements on the July 1961 Cobb cruise. On this basis dark bottle uptake was assumed to be 10 percent of that in light bottles. Since this is offset by the "isotopeeffect" correction (Steemann Nielsen, 1952). both terms were omitted in calculation of primary productivity. Hydrographic cast data were processed by the Data Collection and Processing Group of Scripps Institution of Oceanography following procedures described by Klein ⁵ (table 2), Bathythermograph slides also were processed at Scripps Institution of Oceanography under the supervision of Margaret K. Robinson (table 3). Traces were used to verify temperature-depth configuration obtained from hydrographic station data. Zooplankton samples were analyzed to identify and determine relative abundance of the organisms present for selection of species to be more closely examined later. Letters which designate abundance of the various taxonomic groups (table 8) are relative only to the total in each sample. They have no absolute numerical significance. Groups in parentheses are tentative identifications. #### **ACKNOWLEDGMENTS** Special acknowledgment is made to the Data Collection and Processing Group of Scripps Institution of Oceanography for processing hydrographic cast and BT data and to the Department of Oceanography, University of Washington, for their analysis of salinity and C¹⁴ productivity samples. Also greatly appreciated is the loan of hydrographic data by the Department of Oceanography, University of Washington, for verification of horizontal salinity, temperature, and oxygen distribution (figs. 2-7). These data were obtained on M/V Brown Bear cruise 290 from July 6-25, 1961, and will be published by the collecting agency. #### SCIENTIFIC PERSONNEL Fishery methods and equipment specialist, eries, San Diego, Calif. Fishing Exploratory and Gear Research Base, Seattle, Wash.; party chief Peter Larson Master, M/V John N. Cobb, Seattle, Wash. Jan B. Lawson Senior Marine Technician, Scripps Institution of Oceanography, La Jolla, Calif. Robert W. Owen, Jr. Fishery Biologist (Research), Bureau of Commercial Fish- #### LITERATURE CITED #### ALVERSON, DAYTON L. Harold C. Johnson 1961. Ocean temperatures and their relation to albacore tuna (Thunnus germo) distribution in waters off the coast of Oregon, Washington and British Columbia. Journal of the Fisheries Research Board of Canada, vol. 18, no. 6, p. 1145-1152. $^{^5}$ Hans T. Klein. A new technique for processing physical oceanographic data. Contributions from the Scripps Institution of Oceanography, New Series, No. 000. Undated, typed $M_{\bullet}S_{\bullet}$ #### CALLAWAY, RICHARD J. 1957. Oceanographic and meteorological observations in the Northeast and Central North Pacific, July-December 1956. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 230, 49 p. ## CALLAWAY, RICHARD J., and JAMES W. McGARY. 1959. Northeastern Pacific Albacore Survey, Part 2. Oceanographic and meteorological observations. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 315, 133 p. #### FLEMING, RICHARD H., and Staff. 1959. Physical and chemical data, North Pacific Ocean. Brown Bear Cruise 199, July-August 1958 for the International Geophysical Year of 1957-58. University of Washington, Department of Oceanography, Special Report No. 30, Reference 58-32, 284 p. #### GRAHAM, JOSEPH J. 1959. Northeastern Pacific Albacore Survey, Part 1. Biological observations. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 310, 33 p. #### HOLMES, ROBERT W., and Others. 1958. Physical, chemical, and biological oceanographic observations obtained on Expedition SCOPE in the eastern tropical Pacific, November-December 1956. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 279, 117 p. #### JOHNSON, JAMES H. 1962. Sea temperatures and the availability of albacore off the coasts of Oregon and Washington. Transactions of the American Fisheries Society, vol. 91, no. 3, p. 269-274. #### KING, JOSEPH E., and JOAN DEMOND. 1953. Zooplankton abundance in the Central Pacific. U.S. Fish and Wildlife Service, Fishery Bulletin 82, vol. 54, p. 112-144. #### LOVE, CUTHBERT M. 1957. Northeast Pacific Ocean physical and chemical data. Summers of 1955 and 1956. University of Washington, Department of Oceanography, Technical Report No. 55, Reference 57-27, 104 p. #### POWELL, DONALD E. 1957. North Pacific albacore tuna exploration by the M/V John N. Cobb --1956. U.S. Fish and Wildlife Service, Commercial Fisheries Review, vol. 19, no. 6, p. 1-9. ### POWELL, DONALD E., DAYTON L. ALVER-SON, and ROBERT LIVINGSTONE, JR. 1952. North Pacific albacore tuna exploration--1950. U.S. Fish and Wildlife Service, Fishery Leaflet 402, 56 p. ## POWELL, DONALD E., and HENRY H. HILDEBRAND. 1950. Albacore tuna exploration in Alaska and adjacent waters--1949. U.S. Fish and Wildlife Service, Fishery Leaflet 376, 34 p. ### RICHARDS, FRANCIS A., with THOMAS G. THOMPSON. 1,952. The estimation and characterization of plankton populations by pigment analyses. II. A spectrophotometric method for the estimation of plankton pigments. Journal of Marine Research, vol. 11, no. 2, p. 156-172. #### SCHAEFERS, EDWARD A. 1952. North Pacific albacore tuna exploration--1951. U.S. Fish and Wildlife Service, Commercial Fisheries Review, vol. 14, no. 5, p. 1-12. 1953. North Pacific albacore tuna exploration, 1952. U.S. Fish and Wildlife Service, Commercial Fisheries Review, vol. 15, no. 9, p. 1-6. #### STEEMANN NIELSEN, E. 1952. The use of radio-active carbon (C¹⁴) for measuring organic production in the sea. Journal du Conseil Permanent International pour l'Exploration de la Mer, vol. 18, no. 2, p. 117-140. STRICKLAND, J. D. H. 1960. Measuring the production of marine phytoplankton. Fisheries Research Board of Canada, Bulletin No. 122, 172 p. STRICKLAND, J. D. H., and T. R. PARSONS. 1960. A manual of sea water analysis. Fisheries Research Board of
Canada, Bulletin No. 125, p. 153-163. THRAILKILL, JAMES R. 1956. Relative areal zooplankton abundance off the Pacific coast. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 188, 85 p. U.S. NAVY HYDROGRAPHIC OFFICE. 1956. Bathythermograph observations. Hydrographic Office Publication No. 606-c., 12 p. #### EXPLANATION OF DATA TABLES - Table 1.--Summary of station observations. Hydrographic stations have the prefix "H", while productivity stations are numbered independently and have the prefix "P". Time entries at productivity stations are times of initial water collection. Time entries at hydrographic stations are times of first messenger release. All times are to the nearest 5 minutes and are Pacific Standard Time (PST: +8 zone). - Table 2.--Tabulated hydrographic station data. Time entries are times of first messenger releases on each cast and are GCT. Messenger times and wire angles are given in order of increasing depth when more than one cast was made on a station. A line is left blank between observed data of each cast. To indicate degree of accuracy, temperatures are recorded in tenths of a degree Celsius (C.) when obtained by bucket thermometer or bathythermograph while temperatures from reversing thermometers are recorded in hundredths of a degree C. Extrapolated values and values interpolated between widely spaced observations are entered in parentheses. Hyphens indicate missing observed values. - Table 3.--Bathythermograph observations. Observations presented in accordance with H.O. Publication No. 606-c (1956). Lowerings to 450 ft. are indicated by post-script "a" after the slide number. All other lowerings were made to 900 ft. Observations made at hydrographic stations are indicated in the last column by the station number. Between-station BTs are indicated by hyphens in that column. - Table 4.--Solar radiation measurements. Integrated values are given for morning and afternoon to allow better comparisons between productivity measurements. Values in parentheses are approximate because of occasional recorder pen difficulties. - Table 5.--Surface C 14 productivity measurements. Time entries are times of water collection and are PST (+8 zone). Values in parentheses are questionable by virtue of either slow filtration or damaged filter. These values are not included in station averages or in figure 4. - Table 6.--Surface chlorophyll <u>a</u> measurements. Time entries are times of initial water collection and are PST (+8 zone). Values in parentheses are questionable by virtue of either slow filtration or high optical density at 750 m μ wave length. These values are not included in station averages or in figure 3. - Table 7.--Zooplankton collection data. Time entries are PST (+8 zone). Volume of water recorded is here considered to be volume of water strained by the net although no corrections for net resistance or clogging have been applied to calibrations of the meter. Zooplankton displacement volume is the drained wet volume of organisms captured, after removal of organisms whose volume exceeds 5 cm. 3. - Table 8.--Relative abundance of zooplankton organisms. Taxa in parentheses are tentative identifications. The author is responsible for these and other identifications. - Table 9.--Trolling results. Time entries are PST (+8 zone). - Table 10.--Gill net results. Time entries are PST (+8 zone). #### Abbreviations and Headings used in Data Tables | | | -0 | |----------------|---|---| | GCT | - Greenwich Civil Time. | σ_{t} - expression for sea water | | Lat. N. | north latitude in degrees
and minutes. | density at atmospheric
pressure where $\rho = \frac{\sigma_t}{1000} + 1$ | | Long. W. | west longitude in degrees
and minutes. | ♠ _T , 10 ⁻⁵ cm. ³ /g thermosteric anomaly, the | | m.3 | - cubic meters. | anomaly of specific volume
attained if water were | | cm.3 | - cubic centimeters. | changed isothermally to a | | 1. | - liters. | standard pressure of 1 at-
mosphere, relative to a | | Т, С. | temperature in degrees Celsius. | standard sample of 35 $\frac{1}{\sqrt{2}}$ salinity, 0° C. at the same | | S, % | salinity in parts per mille rounded to nearest value at 2 decimal places from 3 | pressure. Tabular values
multiplied by 10 ⁻⁵ will give
the anomaly in cm. ³ /g. | | | decimal places. | ΔD, dyn. m geopotential anomaly in | | °T | - true bearing. | dynamic meters of the water layer between sur- | | mb. | - millibars. | face and designated pressure. (Depth in meters is assumed numerically equal | | 0_2 , ml./l. | - oxygen concentration. | to pressure indecibars | to pressure indecibars.) TABLE 1.--Summary of Station Observations | Date | | Post | tion | | Hydro- | | c ¹⁴ | | | | Drift | |-------|---------------|-----------|----------|-------------------|---------|----|-----------------|------------------|--------------------|------------------|---------| | (July | Time
(PST) | Lat. N. | Long. W. | Station
number | graphic | BT | produc- | Chloro-
phyll | Phyto-
plankton | Zoo-
plankton | bottle | | 1961) | | l | | | cast | ł | tivity | | | | release | | 11 | 1250 | 47° 421 | 126°12' | H-1,P-1 | Х | X | X | X | - | X | Х | | 11 | 2200 | 47° 45 ' | 127°35' | H-2 | Х | X | - | - | - | - | X | | 12 | 0435 | 47° 44 ¹ | 127°33' | P-2 | - | - | - | X | X | - | - | | 12 | 1340 | 47° 46' | 128°45′ | H-3,P-3 | X | X | •• | X | X | - | X | | 13 | 1350 | 46°41' | 130°481 | H-4,P-4 | X | Χ | - | X | X | - | X | | 13 | 2055 | 46°00' | 130°25' | H-5 | X | X | - | - | - | - | - | | 14 | 0500 | 45°53′ | 130°30' | P-5 | - | - | - | Х | X | - | - | | 14 | 1320 | 45°59' | 129°11' | H-6,P-6 | X | X | X | X | X | Х | X | | 14 | 2130 | 45°581 | 128°10' | H-7 | X | Χ | - | ~ | - | ~ | X | | 15 | 0500 | 45°581 | 128°10' | P-7 | - | - | X | X | X | - | - | | 15 | 1305 | 46°001 | 127°02' | H-8,P-8 | X | Χ | X | X | X | X | X | | 15 | 2135 | 46°001 | 125°53' | H-9 | X | X | - | - | - | - | Х | | 16 | 0525 | 45°541 | 125°59' | P-9 | - | - | X | X | X | - | - | | 16 | 1040 | 46°001 | 125°31′ | H-10 | X | X | - | - | - | - | X | | 16 | 1240 | 45°53' | 125°30' | P-10 | - | - | X | X | X | X | - | | 16 | 2140 | 44°59' | 125°30' | H-11 | X | X | ~ | - | - | - | X | | 17 | 0455 | 44°58' | 125°31' | P-11 | - | - | X | X | X | - | ~ | | 17 | 1250 | 44°091 | 125°29' | H-12,P-1 | 2 X | Χ | X | X | Х | X | X | | 17 | 2135 | 43°18' | 125°32' | H-13 | X | Χ | - | •• | - | - | X | | 18 | 0530 | 43°18' | 125°32' | P-13 | - | - | X | X | X | - | - | | 18 | 1250 | 43°18' | 125°32' | P-13A | - | - | - | X | X | - | - | | 19 | 1230 | 42°13' | 125°30' | P-14 | - | | X | X | X | - | - | | 19 | 1440 | 42°001 | 125°30' | H-14 | X | X | - | - | - | X | X | | 20 | 0505 | 41°57' | 126°09′ | P-15 | - | - | X | X | X | - | - | | 20 | 1335 | 42°001 | 127°04' | H-15,P-1 | 6 X | Χ | - | - | X | X | X | | 20 | 2150 | 41°59' | 128°06′ | H-16 | X | X | _ | - | - | - | - | | 21 | 0520 | 41°59' | 128°18' | P-17 | - | - | X | X | X | - | - | | 21 | 1305 | 42°001 | 129°20' | H-17,P-1 | .8 x | X | - | X | X | X | X | | 21 | 2130 | 42°001 | 130°30' | H-18 | X | X | - | - | - | | X | | 22 | 0515 | 41°57' | 130°36' | P-19 | - | - | - | X | X | - | - | | 22 | 1240 | 42°001 | 132°00' | H-19,P-2 | .0 - | - | X | X | X | - | - | | 22 | 1450 | 42°001 | 132°00' | H-19 | X | X | - | - | - | Х | - | | 23 | 0510 | 42°32' | 132°03' | P-21 | - | ~ | X | X | X | - | - | | 23 | 1055 | 43°00' | 132°00' | H-20 | X | X | - | ~ | - | X | - | | 23 | 1240 | 43°12' | 132°01' | P-22 | - | - | Х | X | X | - | - | | 23 | 2135 | 1170,00 t | 132°00' | H-21 | X | X | - | - | ** | - | - | | 24 | 0520 | 144°00° | 131°56' | P-23 | - | - | X | Х | X | - | - | | 24 | 1250 | 44°00° | 130°56' | H-22,P-2 | 24 X | Χ | Х | Х | X | - | - | | 24 | 2145 | 44°01' | 129°51' | H-23 | X | X | - | - | - | - | - | | 25 | 0520 | 43°55' | 129°47' | P-25 | - | - | X | Х | Х | - | - | | 25 | 1345 | 44°02' | 128°42' | H-24,P-2 | 26 X | X | X | X | X | - | X | | 26 | 0535 | 44°06' | 126°44′ | P-27 | - | - | X | Х | X | - | •• | | 26 | 1250 | 44°061 | 126°01' | H-25,P-2 | 28 X | X | Х | Х | Х | - | Х | TABLE 2.-- Tabulated hydrographic station data | | | OBSER | VED | | | INTERPO | LATED | | CC | MPUTED | | | |---|---|--|--|--|---|--|---|--|--|--|--|-----| | Depth | T. | s. | 02 | δ _T
10cm./g. | Depth | T. | s. | 02 | σ_{t} | δ _T | ΔD | | | m. | °C. | %。 | ml./1. |
10cm./g. | m. | °C. | % | ml/1. | g./l. | 10cm./g. | dyn.m. | | | | 1961; 20
1 no. 1, | | 119 GCT ; | 47°42'N. | , 126°12 | 'W.; wire | angle, C | 04°, 13°; | drift bo | ottles, l | 2; | H-1 | | 0
5
10
20
30
50
70
95 | 15.71
14.88
14.72
13.86
11.76
8.94
8.27
8.30
7.98 | 31.64
31.65
31.65
32.37
32.46
32.59
32.66
33.26 | 5.96
6.00
5.96
6.02
6.72
6.12
5.64
4.08
3.09 | 463
446
442
372
327
272
256
213
182 | 0
10
20
30
50
75
100
125
150 | 15.71
14.72
13.86
11.76
8.94
8.16
8.26
7.93
7.59 | 31.64
31.65
32.37
32.46
32.59
32.72
33.32
33.65
33.92 | 5.96
5.96
6.021/
6.12
5.45
3.88
3.05
2.53 | 23.25
23.48
24.21
24.68
25.26
25.48
25.94
26.25
26.51 | 463
442
372
327
272
251
207
178
153 | 0.00
0.05
0.09
0.12
0.18
0.25
0.30
0.35
0.39 | | | 122 ² / 157 190 224 268 325 400 473 553 | 7.91
7.50
7.08
6.70
6.38
5.95
5.51
5.09
4.68 | 33.69
33.92
33.91
33.96
34.00
34.02
34.06
34.13
34.18 | 3.02
2.49
2.34
2.04
1.80
1.26
0.95
0.60
0.38 | 175
152
147
138
132
125
117
107
98 | 200
250
300
400
500 | 6.96
6.50
6.14
5.51
4.92 | 33.93
33.99
34.02
34.06
34.16 | 2.23
1.90
1.50
0.95
0.48 | 26,60
26,71
26,78
26,89
27,04 | 144
134
127
117
103 | 0.47
0.54
0.61
0.74
0.85 | | | | | | 626 GCT; | 47°45'N. | , 12 7° 35 | 'W.; wire | angle, C | 2°, 07°; | drift bo | ottles, l | 2; | H-2 | | 1
6
11
21
31
51
71
96
126
124 ² /
158
193
228
272 | 1 no. 2,
16.16
16.17
16.16
15.80
11.48
8.99
7.86
7.50
7.52
7.21
6.84
6.27
5.70 | 32.06
32.02
32.02
32.05
32.15
32.56
32.61
33.09
33.53
33.55
33.78
33.87
33.90
33.91 | 5.80
5.79
5.82
5.79
7.00
6.39
6.24
4.87
4.07
4.05
3.76
3.44
2.89 | 442
445
445
435
345
274
261
219
181
180
159
147
138
130 | 0
10
20
30
50
75
100
125
150
200
250
300
400
500 | (16.16)
16.16
15.89
11.80
9.05
8.20
7.51
7.29
6.73
5.95
5.47
5.13
(4.69) | (32.06) 32.02 32.05 32.14 32.55 32.63 33.17 33.54 33.75 33.88 33.91 33.92 34.02 (34.10) | (5.80)
5.81
5.80
6.98
6.40
6.18
4.64
4.06
3.81
3.40
3.08
2.55
1.32
(0.77) | (23.48)
23.45
23.53
24.43
25.22
25.41
25.89
26.22
26.42
26.60
26.72
26.79
26.91
(27.02) | (442)
445
437
351
276
258
212
181
162
145
133
127
116
(105) | (0.00)
0.04
0.09
0.13
0.19
0.26
0.32
0.37
0.41
0.49
0.56
0.66
0.63
0.75
(0.87) | | | 331
405
480 | 5.30
5.12
4.80 | 33.94
34.03
34.09 | 2.08
1.29
0.82 | 123
115
106 | | | | | | | | | | July 12,
BT seria | | 46 GCT, 2 | 215 GCT; | 47°46'N. | , 128°45 | 'W.; wire | angle, C | 6°, 12°; | drift bo | ottles, 1 | 2; | H-3 | | 1
6
12
26
36
61
90
116 | 16.02
16.00
15.78
12.85
11.13
8.66
7.96
7.60
7.28 | 32.39
32.38
32.41
32.50
32.56
32.62
32.65
32.90
33.44 | 5.81
5.73
5.86
7.05
6.58
6.56
6.32
5.72
4.80 | 415
415
409
343
308
265
253
230
185 | 0
10
20
30
50
75
100
125 | (16.02)
15.86
15.13
12.10
9.42
8.22
7.80
7.48
7.25 | (32.39)
32.40
32.44
32.53
32.61
32.63
32.70
33.04
33.54 | (5.81) 5.80 6.20 6.85 6.57 6.47 5.15 5.47 | (23.76)
23.80
23.99
24.68
25.20
25.40
25.52
25.83
26.26 | (415)
411
392
328
277
258
247
218
177 | (0.00)
0.04
0.08
0.12
0.18
0.25
0.31
0.37
0.42 | | | 137 ² /
181
225
259
313
377
476
564
640 | 7.38
7.10
6.34
5.82
5.25
4.79
4.44
4.23
4.07 | 33.25
33.83
33.90
33.90
33.91
33.96
34.05
34.13
34.18 | 5.28
4.34
3.87
3.42
2.72
1.82
1.09
0.60
0.44 | 201
153
139
133
125
116
106
98
92 | 200
250
300
400
500
600 | 6.81
5.93
5.36
4.68
4.38
4.15 | 33.89
33.89
33.90
33.99
34.08
34.16 | 4.15
3.50
2.89
1.59
0.92
0.50 | 26.59
26.71
26.78
26.93
27.04
27.12 | 145
134
127
113
103
95 | 0.50
0.57
0.64
0.76
0.87
0.98 | | Alternate value, 6.89 ml./l.; not used. Overlapping casts; reconciliation of property curves when necessary. TABLE 2.--Tabulated hydrographic station data--Continued | | | | OBSER | VED | | | INTERPO | LATED | | CC | MPUTED | | | |---|--|--|--|--|---|---|---|---|--|--|--|--|-----| | ı | Depth | T. | s. | 02 | δ _T
10cm/g | Depth | T. | s. | 02 | σ_{t} | δ _T | ΔD | | | ı | m. | °C. | %。 | ml./l. | 10cm/g. | m. | °C. | ‰ | mL/1. | g./l. | 10cm./g. | dyn.m. | | | • | BT seria | l no. 7. | 52 GCT , 2 | | | | | | | | | | H-4 | | | 1
6
11
21
31
51
71
95
125 | 15.01
14.98
15.00
14.96
12.96
10.65
9.41
8.36
7.55 | 32.58
32.62U
32.58
32.59
32.58
32.56
32.61
32.87
33.34 | 5.83
5.76
5.80
5.84
6.73
6.46
6.10
5.33
4.78 | 379
-
379
378
340
301
277
242 | 0
10
20
30
50
75
100
125
150
200 | (15.01)
15.00
14.97
13.25
10.73
9.22
8.17
7.58
7.48
6.92 | (32,58)
32,58
32,59
32,58
32,56
32,64
32,96
33,43
33,68
33,86 | (5.83)
5.79
5.84
6.70
6.48
6.00
5.17
4.62
4.36
3.60 | (24.13)
24.13
24.14
24.49
24.95
25.26
25.67
26.12
26.33
26.55 | (380)
380
378
345
302
272
233
190 | (0.00)
0.04
0.08
0.11
0.18
0.25
0.31
0.37
0.41
0.49 | | | | 122 ³ /
153
187
217
266
315
391
470
561 | 7.62
7.46
6.92
6.93
6.04
5.52
4.81
4.54
4.30 | 33.52
33.70
33.84
33.88
33.91
33.94
34.01
34.08
34.14 | 4.46
4.33
3.98
3.55
3.06
2.36
1.49
0.82
0.54 | 184
168
151
148
134
126
113
105
98 | 250
300
400
500 | 6.32
5.68
4.77
4.47 | 33.90
33.93
34.02
34.11 | 3.20
2.60
1.40
0.70 | 26.66
26.77
26.95
27.05 | 149
138
129
112
102 | 0.49
0.57
0.63
0.76
0.87 | | | | | 1961; 04
1 no. 8, | 54 GCT , 0 | 532 GCT; | 46°00'N. | , 130° 25 | 'W.; wire | angle, 0 | 8°, 24°; | drift bo | ottles, 0 | ; | H-5 | | | 2
7
12
22
32
57
81
106
136
128
169
209
241
293
355
451
540 | 15.42
15.40
15.40
14.52
9.96
8.35
8.02
7.66
7.76
7.35
6.88
6.64
6.02
5.23
4.84
4.48 | 32.52
32.52
32.52
32.52
32.58
32.70
33.14
33.57
33.45
33.90
33.94
33.96
33.99
34.08 | 5.65
5.59
5.64
5.65
5.96
6.26
5.84
4.76
3.92
4.18
2.98
2.96
2.24
1.65
0.85
0.51 | 393
393
393
392
375
287
255
217
180
191
157
146
139
130
119
108
103 | 0
10
20
30
50
75
100
125
150
200
250
300
400
500 | (15.42)
15.40
15.40
15.00
10.87
8.57
8.09
7.80
7.51
6.98
6.57
5.92
5.01
4.65
4.28 | (32.52)
32.52
32.52
32.52
32.56
32.67
33.02
33.41
33.74
33.88
33.95
33.96
34.04
34.09
34.14 | (5.65)
5.63
5.65
5.78
6.22
5.92
5.06
4.25
3.31
2.97
2.31
2.20
1.12
0.67 | (23.99)
24.00
24.00
24.00
24.08
24.92
25.38
25.73
26.08
26.38
26.56
26.56
26.76
26.94
27.02
27.10 | (393)
392
392
384
304
260
227
194
166
148
138
129
113
105
98 | (0.00)
0.04
0.08
0.12
0.19
0.32
0.37
0.42
0.57
0.64
0.76
0.88
0.98 | | | | BT serial | l no. 10. | 34.16 ²⁷
17 GCT, 21 | | | | | | | | | | н-6 | | | 3
8
13
23
33
53
73
98
128 |
16.85
16.82
16.60
16.07
13.95
10.14
8.97
8.29
7.33 | 32.21
32.20
32.30
32.40
32.48
32.55
32.58
32.86
33.57 | 5.49
5.49
5.48
5.54
6.09
6.78
6.05
5.24
4.26 | 446
446
434
415
366
293
273
242 | 0
10
20
30
50
75
100
125 | (16.85)
16.79
16.29
14.90
10.59
8.91
8.21
7.36
7.30 | (32.21)
32.21
32.38
32.46
32.55
32.59
32.90
33.50
33.78 | (5.49)
5.49
5.51
5.82
6.78
5.98
5.18
4.40
4.11 | (23.43)
23.45
23.69
24.06
24.96
25.27
25.62
26.21
26.44 | (446)
445
421
386
300
271
238
182
160 | (0.00)
0.04
0.09
0.13
0.20
0.27
0.33
0.39
0.43 | | | | 124
159
193
229
272
332
407
482
561 | 7.37
7.26
6.74
6.32
5.84
5.72
5.33
4.95
4.62 | 33.47
33.84
33.91
33.93
33.94
34.04
34.09
34.16
34.20 | 4.46
4.01
3.32
3.06
2.62
1.28
0.85
0.59
0.40 | 184
155
143
136
130
121
113
103
97 | 200
250
300
400
500 | 6.65
6.04
5.79
5.37
4.86 | 33.92
33.93
33.98
34.08
34.18 | 3.26
2.87
1.90
0.98
0.54 | 26.64
26.72
26.80
26.93
27.06 | 141
133
126
114
101 | 0.51
0.58
0.64
0.77
0.88 | | Overlapping casts; reconciliation of property curves when necessary. Salinity samples at 540 and 615 meters appear to have been reversed; they are assumed to be in the order listed above. TABLE 2.--Tabulated hydrographic station data--Continued | | | OBSER | VED | | | INTERPO | LATED | | CC | MPUTED | | | |---|--|---|--|---|---|---|--|--|--|--|--|-----| | Depth | T. | s. | 02 | δ _T
10cm./g | Depth | T. | s. | 02 | σ_{t} | δ _T | ΔD | | | m. | °C. | %。 | ml/l. | 10čm./g | m, | °C. | % | ml/1. | g./l. | 10cm./g | dyn.m. | | | July 15,
BT serial | 1961; 052
. no. 12. | 28 GCT, 05 | 56 GCT; | 45°58'n., | 128°10' | W.; wire | angle, 00 | °, 05°; | drift bot | ttles, 12 |); | H-7 | | 1
6
11
21
31
51
71
96
126 | 17.33
17.32
17.26
14.44
13.72
10.16
9.03
8.16
7.54 | 31.38
31.38
31.55
32.49
32.48
32.54
32.58
32.97
33.66 | 5.34
5.41
5.41
5.35
6.17
6.44
6.14
4.80
3.12 | 518
517
503
375
361
294
274
232 | 0
10
20
30
50
75
100
125
150
200 | (17.33)
17.28
14.55
13.74
10.35
8.87
8.06
7.56
7.16
6.56 | (31.38)
31.46
32.49
32.48
32.53
32.60
33.64
33.64
33.84
33.93 | (5.34)
5.41
5.33
6.15
6.43
6.02
4.48
3.18
2.76
2.51 | (22.69)
22.76
24.16
24.32
24.99
25.28
25.78
26.29
26.51
26.66 | (517)
510
377
362
298
270
222
174
154
139 | (0.00)
0.05
0.10
0.13
0.20
0.27
0.33
0.38
0.42
0.50 | | | 135
170
210
245
300
354
439
525
610 | 7.37
6.92
6.44
6.09
5.62
5.42
5.02
4.45
4.28 | 33.77
33.89
33.94
33.96
33.98
34.03
34.09
34.14
34.20 | 2.84
2.67
2.46
1.97
1.64
1.18
0.84
0.68
0.42 | 162
147
137
131
124
118
109
99 | 250
300
400
500
600 | 6.04
5.62
5.23
4.59
4.30 | 33.97
33.98
34.07
34.12
34.20 | 1.92
1.64
0.97
0.73
0.45 | 26.76
26.82
26.93
27.05
27.14 | 130
124
113
102
93 | 0.57
0.63
0.75
0.87
0.97 | | | July 15,
BT serial | 1961; 210 | 06 GCT, 21 | 40 GCT; | 46°00'N., | 12 7° 02' | W.; wire | angle, 16 | °, 27°; | drift bot | ttles, 12 | !; | н-8 | | 1
6
10
20
30
49
68
92
121 | 18.06
18.02
16.36
14.12
12.96
10.27
9.24
8.38
7.90 | 29.39
29.41
31.39
32.58
32.57
32.65
32.66
32.86
33.45 | 5.46
5.52
5.69
6.24
6.52
6.34
6.18
5.51
4.30 | 679
676
495
362
340
288
271
243 | 0
10
20
30
50
75
100
125
150 | (18.06)
16.36
14.12
12.96
10.23
8.94
8.20
7.80
7.43 | (29.39)
31.39
32.58
32.57
32.65
32.68
33.00
33.54
33.75 | (5.46)
5.69
6.24
6.52
6.33
6.03
5.17
4.19
3.86 | (21.00)
22.92
24.32
24.54
25.10
25.33
25.70
26.18
26.40 | 495
362
340
287
265
230
185
164 | (0.00)
0.06
0.10
0.14
0.20
0.27
0.33
0.38
0.43 | | | 128
168
210
242
292
352
446
532
607 | 7.73
7.17
6.66
6.23
5.63
5.44
4.96
4.52
4.36 | 33.60
33.84
33.92
33.95
33.97
34.03
34.09
34.15
34.21 | 4.11
3.56
2.78
2.30
2.12
1.29
0.81
0.51
0.42 | 179
154
141
134
125
119
108
100
93 | 200
250
300
400
500
600 | 6.79
6.11
5.60
5.22
4.66
4.36 | 33.91
33.95
33.98
34.06
34.12
34.20 | 2.98
2.27
2.06
1.01
0.60
0.43 | 26.61
26.73
26.82
26.93
27.04
27.13 | 144
132
124
114
103
94 | 0.51
0.58
0.64
0.76
0.88
0.98 | | | July 16,
BT serial | 1961; 053 | 3 GCT, 06 | 000 GCT; | 46°00'N., | 125°53" | W.; wire | angle, 00 | °, 00°; | lrift bot | tles, 12 | ; | Н-9 | | 1
6
11
21
31
51
71
96
126 | 17.44
17.42
17.42
13.46
10.96
9.94
9.86
9.82
9.56 | 30.90
30.92
30.90
32.21
32.56
32.76
32.93
33.24
33.45 | 5.34
5.36
5.39
6.22
6.65
5.17
4.84
4.38
3.64 | 555
553
554
377
305
275
260
236
217 | 0
10
20
30
50
75
100
125 | (17.44)
17.42
13.80
11.05
9.94
9.85
9.80
9.57
8.72 | (30.90)
30.90
32.14
32.56
32.75
32.99
33.29
33.44
33.60 | (5.34)
5.38
6.00
6.66
5.20
4.77
4.27
3.66
3.29 | (22.30)
22.30
24.04
24.89
25.23
25.43
25.67
25.83
26.09 | 554
388
307
275
256
233
218
193 | (0.00)
0.06
0.10
0.14
0.20
0.26
0.32
0.38
0.43 | | | 136
170
210
245
300
354
440
525
610 | 9.38
7.96
7.25
6.56
6.12
5.86
5.37
5.06
4.76 | 33.48
33.77
33.90
33.98
34.01
34.04
34.10
34.16
34.21 | 3.58
2.86
2.45
1.89
1.53
1.29
0.85
0.57 | 212
170
150
136
128
123
112
105
98 | 200
250
300
400
500
600 | 7.42
6.49
6.12
5.58
5.14
4.80 | 33.88
33.98
34.01
34.08
34.14
34.20 | 2.54
1.85
1.53
1.01
0.64
0.42 | 26.50
26.71
26.78
26.90
27.00
27.09 | 154
135
128
116
107
99 | 0.52
0.59
0.66
0.79
0.91
1.01 | | TABLE 2. -- Tabulated hydrographic station data--Continued | | | OBSER | VED | | | INTERPO | LATED | | CC | MPUTED | | | |---|---|---|--|---|---|--|--|--|--|---|--|------| | Depth | T. | s. | 02 | δ _T
10cm./g. | Depth | T. | s. | 02 | $\sigma_{\mathbf{t}}$ | δ _T | ΔD | | | m, | °C. | %。 | ml/l. | 10cm./g | m. | °C. | ‰ | ml/1. | g./1. | 10cm/g | dyn.m. | | | | 1961; 18
1 no. 17. | | 911 GCT; | 46°00'N. | , 125°31 | 'W.; wire | angle, C | 2°, 05°; | drift bo | ottles, l | .2; | H-10 | | 1
6
11
21
31
51
71
96
126 | 17.70
17.69
17.64
14.84
12.11
10.72
9.94
9.52
8.90 | 30.18
30.17
30.21
31.93
32.39
32.59
32.67
32.85
33.46 | 5.44
5.42
5.41
6.09
6.44
6.66
5.42
5.10
3.65 | 613
613
610
424
349
300
281
261
207 | 0
10
20
30
50
75
100
125
150
200 |
(17.70)
17.66
15.10
12.90
10.76
9.89
9.44
8.91
8.31
7.33 | (30,18)
30,20
31,78
32,37
32,58
32,70
32,93
33,44
33,68
33,88 | (5.44)
5.41
6.00
6.40
6.65
5.34
4.94
3.68
3.12
2.60 | (21.68)
21.71
23.49
24.40
24.96
25.20
25.45
25.93
26.21
26.51 | (613)
611
440
354
301
278
254
208
181 | (0.00)
0.06
0.11
0.15
0.22
0.29
0.36
0.42
0.47 | | | 139
183
228
263
316
380
479
569 | 8.56
7.62
6.95
6.54
6.07
5.64
5.20
4.74
4.48 | 33.61
33.84
33.94
33.99
34.02
34.07
34.14
34.220
34.21 | 3.32
2.67
2.46
1.97
1.53
1.07
0.73
0.42
0.47 | 190
160
144
135
126
117
107 | 250
300
400
500
600 | 1.33
6.69
6.20
5.56
5.10
4.62 | 33.97
34.02
34.08
34.16
34.19 | 2.17
1.63
1.00
0.64
0.44 | 26.67
26.77
26.90
27.02
27.10 | 138
128
116
105
97 | 0.63
0.69
0.82
0.94
1.04 | | | | | | 605 GCT; | 44°59'N. | , 125°30 | 'W.; wire | angle, C | 3°, 07°; | drift b | ottles, 1 | .2; | H-11 | | 1
6
11
21
31
51
71
96
126
138
163
192
227
271
331 | 1 no. 19. 18.17 18.16 17.82 12.84 11.12 9.90 9.32 9.01 7.60 7.38 7.10 6.47 6.12 | 29.46
29.44
29.88
32.33
32.52
32.61
32.72
33.20
33.56
33.89
33.89
33.99
34.06 | 5.26
5.29
5.28
6.22
6.50
5.69
5.44
4.21
3.68
3.70
3.32
2.46
1.92 | 677
677
638
356
311
284
267
227
184
171
159
149
140
133
124 | 0
10
20
30
50
75
100
125
150
200
250
300
400
500 | (18.17)
18.00
13.15
11.19
9.98
9.29
8.92
7.50
7.01
6.60
6.30
5.68
5.24 | (29.46)
29.74
31.95
32.51
32.60
32.78
33.56
33.75
33.90
33.97
34.03
34.16 | (5.26)
5.28
6.15
6.50
5.75
5.33
4.02
3.68
3.57
2.83
2.19
1.70
1.13
0.65 | (21.03)
21.28
24.03
24.83
25.10
25.36
25.80
26.18
26.39
26.57
26.68
26.77
26.89
27.00 | (676)
652
389
313
287
263
221
185
165
147
137
128
117 | (0.00)
0.07
0.12
0.15
0.21
0.28
0.39
0.44
0.52
0.59
0.66
0.79 | | | 405
4 7 9
559 | 5.66
5.34
4.99 | 34.09 ² /
34.15 ² /
34.20 ² / | 0.72
0.56 | 117
108
101 | | | | | | | | | | July 17, | | | | | , 125°29 | 'W.; wire | angle, C | 8°, 16°; | drift b | ottles, l | .2; | H-12 | | 1
6
11
21
30
55
81
105 | 17.20
17.14
15.20
10.71
10.00
8.89
8.74
8.10
7.60 | 30.08
30.10
30.52
32.28
32.49
32.67
32.21
33.62
33.83 | 5.58
5.66
6.18
6.04
6.18
5.43
4.13
3.02
2.72 | 610
607
535
322
295
265
297
183
160 | 20
30
50
75
100
125
150 | 15.80
11.78
10.00
9.05
8.77
8.22
7.73
7.38 | 32.05
32.49
32.63
33.09
33.56
33.77
33.90 | 6.16
6.06
6.18
5.61
4.41
3.18
2.81
2.55 | 22.26
24.36
25.02
25.28
25.68
26.13
26.37
26.52 | 558
357
295
270
232
189
167 | (0.00)
0.06
0.10
0.14
0.19
0.26
0.31
0.35
0.39 | | | 143
167
200
232
286
338
420
503
587 | 7.45
7.18
6.86
6.49
6.04
5.74
5.38
5.00
4.70 | 33.87
33.94
33.99
34.00
34.03
34.13
34.16
34.23 | 2.66
2.35
2.01
1.81
1.70
1.16
0.86
0.53
0.40 | 155
146
139
133
125
118
110
104 | 200
250
300
400
500
600 | 6.86
6.32
5.96
5.47
5.02
(4.66) | 33.99
34.01
34.04
34.12
34.15
(34.25) | 2.01
1.77
1.60
0.94
0.55 | 26.66
26.75
26.82
26.94
27.02
(27.14) | 139
130
124
112
105
(93) | 0.47
0.54
0.60
0.72
0.84
(0.94) | | ^{5/} Salinity samples at 405, 479 and 559 meters appear to have been reversed; they are assumed to be in the order listed above. TABLE 2.-- Tabulated hydrographic station data--Continued | | | OBSER | VED | | | INTERPO | LATED | | cc | MPUTED | | | |-----------------------|-------------------------|----------------------------------|-----------------------|----------------------------|------------|------------------------|----------------------------------|--------------|-----------------------|---------------------|-------------|------| | Depth | T. | S. | 02 | δ _T | Depth | T. | s. | 02 | $\sigma_{\mathbf{t}}$ | δ _T | ΔD | | | m. | °C. | %。 | ml/1. | ^δ T
10cm./g. | m. | °C. | ‰ | ml/1. | g./1. | 10cm./g | dyn.m. | | | July 18, | 1961; 05 | 35 GCT, 0 | 601 GCT; | 43°18'N. | , 125°32 | 'W.; wire | angle, (| 08°, 06°; | drift b | ottles, l | 2; | н-13 | | BT seria | 11 no. 23.
15.09 | 32.24 | 5.69 | 406 | 0 | (15.09) | (32.24) | (5.69) | (23.85) | (406) | (0.00) | | | 6
11 | 15.08
14.70 | 32.24
32.26 | 5.73
5.85 | 406
39 7 | 10
20 | 14.95
11.53 | 32.24
32.64 | 5.82
6.16 | 23.88
24.87 | 403
309 | 0.04 | | | 21
31 | 11.42
10.37 | 32.64
32.74 | 6.16
5.49 | 307
283 | 30
50 | 10.48 | 32.73
32.95 | 5.59
4.29 | 25.12
25.52 | 285
247 | 0.11 | | | 56
80 | 9.05 | 32.97 | 4.21 | 245 | 75 | 8.68 | 33.34 | 3.40 | 25.89 | 212 | 0.22 | | | 105 | 8.54
7.95 | 33.42
33.69 | 3.25
3.00 | 204
175 | 100
125 | 8.06
7.61 | 33.65
33.81 | 3.05
2.68 | 26.23
26.42 | 180
162 | 0.27 | | | 135 | 7.49 | 33.86 | 2.53 | 157 | 150
200 | 7.31
6.50 | 33.91
33.96 | 2.39
2.34 | 26.54
26.69 | 150
136 | 0.35 | | | 149
173 | 7.32
6.99 | 33.91
33.95 | 2.40 | 151
143 | 250
300 | 6.30
5.92 | 34.02
34.05 | 1.65
1.31 | 26,76
26.83 | 129
122 | 0.49 | | | 208
242 | 6.42
6.35 | 33.96
34.01 | 2.35 | 135
131 | 400
500 | 5.29
4.82 | 34.11
34.18 | 0.83 | 26.96
27.07 | 111 | 0.68 | | | 296 | 5.96 | 34.04 | 1.33 | 123 | 600 | 4.52 | 34.25 | 0.36 | 27.16 | 92 | 0.89 | | | 350
436 | 5.56
5.11 | 34.08
34.12 | 1.02
0.72 | 116
108 | | | | | | | | | | 520
605 | 4.76
4.50 | 34.20
34.26 | 0.42
0.35 | 98
91 | | | | | | | | | | July 19, | 1961; 22 | 40 GCT, 2 | 304 GCT; | 42°00'N. | , 125°30 | 'W.; wire | angle, 0 | 9°, 26°; | drift bo | ottles, l | 2; | H-14 | | BT seria
1 | 1 no. 25. | 31.69 | 5.12 | 488 | 0 | (17.04) | (31.69) | (5.12) | (22.99) | (488) | (0.00) | | | 11
31 | 16.95
14. 7 2 | 31.70
32.69 | 5.40
5.77 | 486
365 | 10
20 | 16.96
16.86 | 31. 7 0
31. 7 2 | 5.39
5.53 | 23.02 | 486
482 | 0.05 | | | 40
51 | 11.61
10.92 | 32.79
32.80 | 6.34 | 300
287 | 30
50 | 14.82 | 32.67
32.80 | 5.73
6.16 | 24.24 | 369
288 | 0.14 | | | 65 | 10.12 | 32.81 | 5.88 | 273 | 7 5 | 9.89 | 32.81 | 5.86 | 25.28 | 270 | 0.28 | | | 80
100 | 9.76
9.19 | 32.81
33.02 | 5.84
5.19 | 268
243 | 100
125 | 9.19
8.36 | 33.02
33.32 | 5.19
4.57 | 25.56
25.92 | 243
209 | 0.34 | | | 125
-6/ | 8.30 | 33.34 | 4.59 | 207 | 150
200 | 7.99
7.50 | 33.68
33.88 | 3.82
3.32 | 26.26
26.49 | 1 7 7
155 | 0.45 | | | 138 <u>6</u> /
163 | 8.19
7.85 | 33.54
33.77 | 4.08
3.66 | 190
1 <i>6</i> 8 | 250
300 | 6.9 7
6.53 | 33.95
34.00 | 2.51
1.93 | 26.62
26.72 | 143
134 | 0.61 | | | 194
221 | 7.54
7.28 | 33.87
33.92 | 3.40
2.90 | 156
149 | 400
500 | 5.84
(5.31) | 34.06
(34.13) | 1.20 | 26.85
(26.97) | 121 (109) | 0.81 (0.93) | | | 265
314 | 6.82
6.42 | 33.96
34.01 | 2.35 | 140
131 | | ()-5-7 | (3.11-37 | | (201) / | (20)/ | (0.)37 | | | 391 | 5.88 | 34.05 | 1.27 | 122 | | | | | | | | | | 470
553 | 5.48
5.00 | 34.11
34.01 U | 0.84
0.83 u | 113 | | | | | | | | | | July 20, | 1961; 213 | 36 GCT , 2 | 201 GCT; | 42°00'N. | , 127°04 | W., wire | angle, 0 | 5°, 10°; | drift bo | ttles, l | 2; | H-15 | | 1 | 16.54 | 32.68
32.68 | 5.40
5.42 | 405 | 0
10 | (16.54)
16.46 | (32.68) | (5.40) | (23.86) | (405) | (0.00) | | | 31 | 15.34 | 32.71 | 5.54 | 403
377 | 20 | 16.28 | 32.68 | 5.44 | 23.92 | 399 | 0.04 | | | 41
56 | 13.92 | 32.74
32.76 | 5.78
6.11 | 346
316 | 30
50 | 15.38
12.95 | 32.71
32.75 | 5.53
6.02 | 24.15
24.68 | 378
327 | 0.12 | | | 71.
96 | 10.78
9.84 | 32 .7 7
32 . 88 | 5.95
5.38 | 287
263 | 75
100 | 10.59
9 .7 5 | 32 .7 8
32 . 92 | 5.86
5.27 | 25.14
25.39 | 283
259 | 0.27 | | | 115
135 | 9.48
8.89 | 33.10
33.47 | 4.85
3.94 | 242
206 | 125
150 | 9.12
8. 7 2 | 33.32
33.59 | 4.30
3.62 | 25.81
26.08 | 220
194 | 0.40 | | | 156 | 8.64 | 33.64 | 3.49 | 189 | 200
250 | 7.62
6.83 | 33.91
33.98 | 2.82 | 26.49
26.66 | 155
139 | 0.54 | | | 180
214 | 8.03
7.36 | 33.84
33.94 | 2.97 | 165
149 | 300
400 | 6.28
5.45 | 33.98
34.06 | 2.21 | 26.73 | 132 | 0.68 | | | 243 | 6.91 | 33.98 | 2.42 | 140 | 500 | 5.08 | 34.14 | 0.76 | 26.90 | 116 | 0.81 | | | 291
345 | 6.40
5. 7 4 | 33.98
34.01 | 2.30 | 133
123 | 600 | (4.70) | (34.20) | (0.48) | (27.10) | (97) | (1.03) | | | 429
514 | 5.34
5.02 | 34.08
34.15 | 0.69 | 113
105 | | | | | | | | | | 598 | 4.72 | 34.19 | 0.48 | 98 | | | | | | | | | Double casts; reconciliation of property curves when necessary. TABLE 2.--Tabulated hydrographic station data--Continued | | | OBSER | VED | | | INTERPO | LATED | | CC | MPUTEL | | | |---
--|---|--|---|--|--|--|--|--|--|--|------| | Depth | T. | S. | 02 | δT | Depth | T. | s. | 02 | σ_{t} | δ _T | ΔD | | | m. | °C. | %。 | ml/1. | 10cm./g | m. | °C. | % | mL/1. | g./1. | 10cm./g | dyn.m. | | | | 1961; 05:
1 no. 29, | 48 GCT, 00
29a. | 615 GCT; | 41°59'N. | , 128°06 | 'W.; wire | angle, 0 | 3°, 15°; | drift bo | ottles, 0 | ; | H-16 | | 1
11
31
41
56
71
96
115 | 17.04
17.01
15.38
14.74
12.16
10.52
9.72
9.35
8.70 | 32.35
32.35
32.70
32.74
32.77
32.76
33.01
33.26
33.52 | - | 440
439
379
363
311
283
252
228
199 | 0
10
20
30
50
75
100
125
150
200 | (17.04)
17.01
16.57
15.44
13.48
10.34
9.64
9.02
8.57
7.95 | (32.35)
32.35
32.45
32.69
32.76
32.78
33.07
33.39
33.59
33.88 | | (23.50)
23.50
23.68
24.12
24.58
25.18
25.53
25.88
26.10
26.42 | (440)
439
422
381
336
279
247
213
192
161 | (0.00)
0.04
0.09
0.13
0.20
0.28
0.34
0.40
0.45
0.54 | | | 154
183
217
245
295
348
431
514
598 | 8.54
8.26
7.69
7.46
6.96
6.38
5.77
5.34
4.87 | 33.60
33.83
33.92
33.96
34.00
34.03
34.08
34.13
34.20 | - | 191
170
155
149
139
130
118
110 | 250
300
400
500
600 | 7.41
6.90
5.97
5.42
(4.85) | 33.96
34.00
34.07
34.12
(34.20) | : | 26.56
26.67
26.84
26.95
(27.08) | 148
138
121
111
(99) | 0.62
0.69
0.83
0.95
(1.06) | | | July 21,
BT seria | | 05 GCT, 21 | 130 GCT; | 42°00'N. | , 129°20 | 'W.; wire | angle, 0 | 9°, 27°; | drift bo | ttles, 1 | 2; | H-17 | | 2
12
32
41
56
71
96
115
135 | 16.36
16.38
15.56
15.04
12.44
10.90
9.66
9.02
8.56
8.18
7.77
7.30 | 32.81
32.80
32.78
32.79
32.79
32.84
33.18
33.44 | 5.53
5.58
5.68
5.69
6.32
5.95
4.63
4.02
3.89
3.56
3.10
2.72 | 392
392
376
365
315
284
239
210 | 0
10
20
30
50
75
100
125
150
200
250
300
400 | (16.36)
16.38
16.36
15.58
13.23
10.62
9.50
8.77
8.37
7.50
6.84
6.35
5.51 | (32.81)
32.80
32.80
32.78
32.78
32.88
33.26 | (5.53)
5.57
5.62
5.66
6.10
5.74
4.47
3.94
3.75
2.46
2.08
1.20 | (24.00)
23.99
24.00
24.16
24.65
25.21
25.70 | (391)
393
392
377
330
276
230
-
-
- | (0.00)
0.04
0.08
0.12
0.19
0.26
0.33 | | | 241
287
346
438
525
599 | 6.95
6.48
5.91
5.28
4.87
4.58 | - | 2.52
2.19
1.62
0.99
0.57
0.37 | - | 500
600 | 4.98
(4.57) | Ξ | 0.67
(0.37) | Ξ. | - | Ξ | | | July 22,
BT serial | l no. 32. | 27 GCT, 05 | 550 GCT; | 42°00'N. | , 130°30 | | angle, 0 | | drift bo | ttles, 1 | 2; | H-18 | | 1
11
31
41
56
70
95
115
135 | 16.20
16.13
12.73
12.08
11.08
10.54
9.85
9.18
8.94 | 32.92
32.93
33.09
33.38 | 5.24
5.40
6.28
6.36
6.05
5.78
5.63
5.42
5.07 | 272
260
238
213 | 0
10
20
30
50
75
100
125
150
200 | (16.20)
16.15
14.95
12.94
11.47
10.40
9.68
9.03
8.81
8.32 | 32.92
32.94
33.28
33.49
33.89 | (5.24)
5.37
5.80
6.26
6.20
5.73
5.58
5.22
4.93
4.58 | 25.28
25.42
25.79
25.99
26.38 | -
-
-
270
257
222
203
166 | | | | 152
181
215
245
294
348
432
516
600 | 8.78
8.46
8.20
7.76
6.74
5.85
3.96
4.45
4.10 | 33.51
33.80
33.93
33.96
33.94
33.93
33.98
34.05
34.14 | 4.91
4.73
4.46
4.05
3.76
3.10
2.04
1.17
0.66 | 201
174
161
153
141
130
106
106
96 | 250
300
400
500
600 | 7.65
6.63
5.23
4.52
4.10 | 33.95
33.95
33.96
34.04
34.14 | 4.00
3.70
2.44
1.30
0.66 | 26.52
26.66
26.85
26.99
27.11 | 152
139
121
108
96 | - | | TABLE 2.--Tabulated hydrographic station data--Continued | | | OBSER | VED | | | INTERPO | LATED | | CC | MPUTEI | | | |---|---|--|--|--|---|---|--|--|--|---|--|------| | Depth | T. | s. | 02 | δ _T | Depth | T. | s. | 02 | σ_{t} | δ _T | ΔD | | | m. | °C. | %。 | ml./1. | 10cm./g | m. | °C. | %0 | ml/1. | g./1. | 10cm/g | dyn.m. | | | BT seria | 1 no. 33. | | | | | | | | | | | H-19 | | 2
12
32
41
56
81
95
115 | 16.11
16.08
14.56
13.33
11.76
10.05
9.80
9.41
9.11 | 32.85
32.87
32.87
32.84
32.85
32.86
32.88
32.88 | 5.61
5.60
5.91
6.39
6.75
6.04
5.94
5.92
5.74 | 383
381
350
327
298
269
263
257
245 | 0
10
20
30
50
75
100
125
150
200 | (16.11)
16.08
16.08
14.77
12.30
10.23
9.70
9.25
8.78
8.35 | (32.85)
32.87
32.87
32.85
32.85
32.85
32.88
32.90
33.24
33.90 | (5.61)
5.60
5.60
5.83
6.67
6.12
5.94
5.86
5.44
4.71 | (24.09)
24.11
24.11
24.40
24.89
25.26
25.37
25.46
25.80
26.38 | (383)
381
381
354
308
272
262
253
221
166 | (0.00)
0.04
0.08
0.11
0.18
0.25
0.32
0.38
0.44
0.54 | | | 159
187
224
252
299
360
455
542
615 | 8.62
8.40
8.24
7.96
7.00
5.83
4.85
4.43
4.28 | 33.43
33.82
33.97
33.98
33.96
33.96
34.06
34.00U | 5.24
4.79
4.53
4.18
3.84
3.23
1.90
1.29
0.96 | 204
172
159
154
143
130
117 | 250
300
400
500
600 | 7.99
6.99
5.33
4.60
4.30 | 33.98
33.96
33.94
34.00 | 4.21
3.83
2.60
1.62
1.03 | 26.50
26.62
26.82
26.95 | 155
142
124
111
- | 0.62
0.70
0.84
0.96 | | | | 1961; 18
1 no. 35. | 55 GCT, 1 | 918 GCT ; | 43°00'N. | , 132°00 | 'W.; wire | angle, 0 | 3°, 10°; | drift b | ottles, (|); | H-20 | | 1
11
31
41
56
71
96
116
135 | 15.72
15.62
12.55
11.38
10.26
9.84
9.48
9.04
8.70
8.56
8.26
8.06 | 32.84
32.84
32.82
32.84
32.89
32.87
32.91
33.02
33.34
33.52
33.74
33.90 | 5.45
5.55
6.53
6.53
5.87
5.82
5.73
5.58
5.26
5.08
4.84 | 376
373
314
292
270
264
256
241
212
197
176
161 | 0
10
20
30
50
75
100
125
150
200
250
300 | (15.72)
15.63
15.57
12.65
10.63
9.77
9.40
8.85
8.59
8.17
7.37
6.35
5.13 | (32.84)
32.84
32.84
32.89
32.87
32.93
33.15
33.49
33.83
33.93
33.91
33.96 | (5.45)
5.53
5.56
6.51
6.08
5.71
5.44
5.12
4.66
4.01
3.50
2.27 | (24.17)
24.19
24.21
24.80
25.22
25.35
25.46
25.72
26.02
26.35
26.67
26.86 | (376)
374
372
316
276
263
253
229
200
168
150
138
120 | (0.00)
0.04
0.07
0.11
0.17
0.24
0.30
0.36
0.42
0.51
0.59
0.66
0.80 | | | 248
297
352
435
519
603 | 7.42
6.40
5.63
4.85
4.44
4.13 | 33.93
33.91
33.92
33.99
34.05
34.09 | 4.03
3.51
2.87
1.90
1.04
0.93 | 150
139
128
115
106
100 | 500
600 | 4.51
4.14 | 34.04
34.09 | 1.15
0.94 | 26.99
27.07 | 107
100 | 0.92
1.03 | | | BT serial | l no. 37. | 36 GCT , 0 | | | | | | | | | | H-21 | | 1
11
31
41
56
71
96
115 | 15.83
15.83
14.32
12.46
10.52
9.24
8.58
8.15
7.81 |
32.77
32.74
32.72
32.71
32.73
32.74
32.98
33.29 | 5.48
5.60
6.15
6.53
6.50
6.17
6.04
5.29
4.83 | 383
383
354
320
287
266
255
231
203 | 0
10
20
30
50
75
100
125
150 | (15.83)
15.83
15.71
14.45
11.30
9.18
8.49
7.97
7.70 | 32.77
32.76
32.74
32.72
32.73
32.77
33.14
33.51 | (5.48)
5.59
5.67
6.10
6.52
6.16
5.97
5.02
4.53 | (24.09)
24.09
24.11
24.37
24.97
25.34
25.47
25.84
26.17 | (383)
383
381
357
300
265
252
217
185 | (0.00)
0.04
0.08
0.11
0.18
0.25
0.32
0.37
0.42 | | | 155
184
219
248
297
352
436
520
605 | 7.67
7.46
6.76
6.38
5.80
5.47
4.89
4.50
4.24 | 33.57
33.79
33.89
33.91
33.92
33.98
34.05
34.12
34.19 | 4.44
4.09
3.58
3.36
2.84
1.73
1.12
0.72
0.48 | 180
161
144
138
130
122
111
101
94 | 200
250
300
400
500
600 | 7.14
6.35
5.78
5.10
4.58
4.25 | 33.86
33.91
33.93
34.02
34.11
34.18 | 3.81
3.35
2.78
1.36
0.80
0.50 | 26.52
26.67
26.76
26.91
27.04
27.13 | 152
138
130
115
103
94 | 0.51
0.58
0.65
0.78
0.89
1.00 | | TABLE 2.-- Tabulated hydrographic station data-- Continued | | | OBSER | VED | | | INTERPO | LATED | | CC | MPUTED | | | |--|--|--|--|--|---|--|--|--|---|--|---|------| | Depth | T. | S. | 02 | δ _T
10cm./g. | Depth | T. | S. | 02 | σ_{t} | δT | ΔD | | | m. | °C, | %。 | ml./l. | 10cm./g. | m. | °C, | ‰ | ml/l. | g./l. | 10cm./g | dyn.m. | | | July 24,
BT seria | | 50 GCT, 21 | 112 GCT; | 44°00'N. | ,130°56' | W.; wire | angle, 08 | | lrift bot | tles, 0; | | H-22 | | 2
12
32
42
56
71
96
116
136 | 16.03
16.00
12.48
10.08
9.55
9.10
8.66
8.28
7.84 | 32.81
32.80
32.68
32.73
32.76
32.75
32.74
33.04
33.48 | 5.54
5.64
7.01
6.56
6.19
6.12
5.99
5.41
4.21 | 384
384
324
278
268
262
256
228
190 | 0
10
20
30
50
75
100
125
150
200 | (16.03)
16.01
16.00
14.20
9.79
9.00
8.60
8.10
7.57
6.96 | (32,81)
32.80
32.80
32.72
32.75
32.74
32.74
33.28
33.69
33.92 | (5.54)
5.64
5.64
6.48
6.35
6.08
5.97
4.78
3.64
2.70 | (24.08)
24.08
24.08
24.41
25.25
25.37
25.43
25.93
26.33
26.60 | (384)
385
384
353
273
261
255
208
170
145 | (0.00)
0.04
0.08
0.11
0.18
0.24
0.31
0.37
0.41 | | | 167
196
235
265
314
377
475
564
638 | 7.30
7.00
6.59
6.45
6.04
5.62
5.04
4.50
4.34 | 33.85
33.91
33.95
33.98
34.03
34.05
34.12
34.16
34.15U | 3.13
2.72
2.36
1.94
1.54
1.10
0.69
0.50 | 155
146
138
134
126
119
107
98 | 250
300
400
500
600 | 6.51
6.16
5.50
4.87
4.39 | 33.97
34.02
34.07
34.14 | 2.18
1.66
1.00
0.60 | 26.70
26.78
26.90
27.03 | 136
128
116
104 | 0.57
0.63
0.76
0.88 | | | July 25,
2
12
37
46
61
76
101
120
140 | 1961; 05:
16.20
16.21
13.11
11.47
10.10
9.56
9.14
8.62
8.13 | 47 GCT; 44
32.84
32.81
32.72
32.75
32.75
32.77
32.77
32.77
32.87
33.20 | 4°01'N.,
5.71
5.87
7.10
6.92
6.57
6.44
6.40
5.88
5.19 | 129°51'W
386
388
332
301
275
268
261
246
214 | 0; wire 0 10 20 30 50 75 100 125 150 | angle, 09
(16.20)
16.20
16.20
14.85
10.77
9.59
9.16
8.50
(7.90) | °; drift
(32.84)
32.81
32.76
32.78
32.77
32.77
32.97
(33.27) | bottles,
(5.71)
5.86
5.88
6.48
6.75
6.43
6.41
5.67 | 0; BT se
(24.06)
24.04
24.04
24.30
25.11
25.30
25.37
25.63
(2>.95) | erial no.
(386)
388
388
363
286
268
261
237
(206) | 41.
(0.00)
0.04
0.08
0.12
0.18
0.25
0.32
0.38
(0.44) | н-23 | | July 25,
2
12
32
41
56
71
96
115 | 1961; 21 ¹ 16.83 16.82 15.35 13.98 11.94 10.56 9.77 9.39 8.73 | 43 GCT; 44
32.04
32.02
32.73
32.73
32.74
32.80
32.98
33.16
33.43 | 4°02'N.,
5.81
5.86
6.17
6.37
6.87
6.39
5.54
5.12
4.58 | 128° 42'W
458
459
376
348
309
282
255
236
206 | 0 10 20 30 50 75 100 125 | angle, 09
(16.83)
16.82
16.81
15.37
12.32
10.34
9.69
9.10 | °; drift
(32.04)
32.03
32.03
32.73
32.73
32.83
33.02
33.29 | bottles,
(5.81)
5.84
5.87
6.17
6.82
6.20
5.47
4.85 | | serial no
(458)
459
458
376
317
275
251
222 | . 42.
(0.00)
0.05
0.09
0.13
0.20
0.28
0.34
0.40 | H-24 | | July 26,
BT seria | | 48 ccr, 2 | 121 GCT; | 44°06'N. | , 126°01 | 'W.; wire | angle, 1 | .1°, 20°; | drift bo | ttles, 3 | 6; | H-25 | | | 15.92
15.92
15.92
11.78
10.48
9.56
9.12
8.14
7.90
7.46 | 31.21
31.21
31.21
32.47
32.62
32.65
32.82
33.52
33.68
33.86 | 5.36
5.630
5.48
6.48
6.21
5.66
5.21
3.62
3.11
2.56 | 499
499
499
326
293
276
257
191
175 | 0
10
20
30
50
75
100
125
150
200 | 15.93
15.55
12.00
9.87
8.93
8.08
7.69
7.12
6.56 | 31.21
31.30
32.43
32.63
32.97
33.56
33.78
33.93
34.00 | (5.36)
5.47
5.54
6.48
5.86
4.90
3.50
2.80
2.35
1.72 | 22.88
23.03
24.62
25.15
25.56
26.15
26.38
26.58
26.71 | 499
485
333
283
243
187
165
146
134 | (0.00)
0.05
0.10
0.14
0.20
0.27
0.32
0.37
0.41
0.48 | | | 160
188
224
253
300
361
456
544
617 | 6.96
6.65
6.42
6.30
6.06
5.90
5.56
5.20
4.88 | 33.96
33.98
34.02
34.04
34.05
34.07
34.12
34.11U
34.22 | 2.22
1.79
1.65
1.58
1.28
1.16
0.88
0.54
0.44 | 142
136
131
128
124
120
113 | 250
300
400
500
600 | 6.31
6.06
5.77
5.37
4.94 | 34.03
34.05
34.09
34.16
34.21 | 1.61
1.28
1.09
0.69
0.47 | 26.77
26.82
26.88
26.99
27.08 | 129
124
118
108
99 | 0.54
0.61
0.73
0.85
0.96 | | TABLE 3.--Bathythermograph observations | Ser. Prophic Prophic Ser. S | | | Green | url ch | 1 | | Sea | u. | ınd | I Atr t | Omp. | | | Clo | nide | | C., | 1011 | |---|------------|--------|-------|--------|---------|-------------|---------|------|-------|---------|------|------|------
-------|------|---------|-----|----------| | | | Hydro- | | | | | aurface | | 1 | Dry | Wet | | | | | | | | | 18 H-1 2025 11 h/Th25 126712 | No. | | Hour | Date | N. | ₩. | | | Force | | | | ther | Туре | Amt. | (miles) | | | | 2 | | | | | | | | | | | | | | - | | | 290 | 3 | | Bear Content 1700 12 47"45 127"33 61.2 290 2 62.5 60.8 1015 02 - 0 8 290 3 | | | | | | | | | | | | | | • | | | | | | 3 | | | | | | | | | | | | | | - | | | | _ | | 5 - 1255 133 47"14" 130"26' 57.9 310 5 1016 10 1 8 8 4 310 \$\frac{1}{2}\$ 6 - 1775 133 47"12" 130"30" 58.0 5 5.75 57.5 57.5 1017 10 1 8 6 6 310 \$\frac{1}{2}\$ 7 8-4 2120 13 46"41" 130"45" 95.0 300 5 66.6 \$\frac{6}{2}\$ 8.8 1018 02 1 8 6 6 320 \$\frac{1}{2}\$ 8 8 8 9 0 0415 14 46"00" 130"25" 95.7 060 5 98.3 57.9 1018 02 1 8 8 7 000 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10 | _ | - | | | | | 60.6 | 310 | 5 | 61.2 | | | | - | | | | | | 6 - 1715 13 47127 130*hor 58.5 310 5 57.5 57.5 1017 10 1 8 6 6 310 k 8 8 10 8 0 1 8 6 6 320 k 8 10 8 0 1 8 6 6 320 k 8 10 8 0 1 8 6 6 320 k 8 10 8 0 1 8 6 6 320 k 8 10 8 0 1 8 6 7 000 3 3 9 - 1705 14 46*00*1 130*25* 59.7 080 5 58.5 57.9 1018 02 1 8 7 000 3 3 9 - 1705 14 46*00*1 130*25* 59.7 080 5 58.5 57.9 1018 02 1 8 7 000 3 3 9 - 1705 14 45*01*1 102*5* 59.7 080 5 58.5 57.9 1018 02 1 8 7 000 3 3 9 - 1705 14 45*01*1 102*5* 59.7 080 5 58.5 57.9 1018 02 1 8 7 000 3 3 9 - 1705 14 45*01*1 102*5* 59.7 080 5 58.5 57.9 1018 02 1 8 7 000 3 3 10 1 1 1 - 0130 15 45*09*1 128*00*6 61.3 310 2 61.8 59.9 1018 02 4,6.8 7 8 300 1 1 1 - 0130 15 45*09*1 128*00*1 63.3 310 2 61.0 59.9 1018 02 6 6 7 7 8 300 1 1 1 1 - 0130 15 45*09*1 128*00*1 63.3 310 2 61.0 59.9 1018 02 6 6 7 7 300 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4 5 | H-3 | | | | | | | | 61.3 | 60.1 | | | 1 | | | | | | 7 H-4 | 6 | _ | | | | | 58.5 | | | 57.5 | 57.5 | | | | | | | | | 88 | | | | | | | 59.0 | | | 60.6 | 58.8 | | | | | | | | | 9 - 1705 14 | | | | | | | | | | 58.3 | | | | | | | | | | No. | | - | | | | | | | | | | | | | | | | | | 11 | 10 | n-6 | 2025 | 7.14 | 1,50501 | 1209111 | 60.1 | 210 | 2 | 60.0 | 68.8 | 1010 | 00 | | | 7 | | 1 | | 12 | | - | | | 45°591 | | | | | | | | | | | 8 | | - | | 14 B-8 2030 15 45*5*9*1 127*0°2*1 64, k 270 k 62.9 60.1 108 02 6 7 7 3100 3 16 H-9 0505 16 45*0*0*1 125*31*1 61.5 270 3 61.2 60.5 1018 02 6 7 7 3100 3 18 - 0000 17 45*35*1 125*31*1 61.7 20 6 6 7 7 310 3 18 H-11 0505 17 44*5*9*1 61.8 270 2 62.5 59.5 1022 02 6.8 2 8 310 1 20 - 0910 17 44*32*1 125*30*0 61.5 340 5 63.0 61.6 1023 02 8 2 8 260 1 21 H-12 2015 17 44*25*2*1 125*30*0 61.5 | | H-7 | | | | | 63.1 | | | | 59.8 | | | | | 7 | | | | 15 | | E_8 | | | | | | | | | | | | | | | | | | H-10 | 15 | - | 0155 | 16 | 45°57' | 126°20' | | | | | 59.9 | | | | | | | - | | 18 | | | | | | | | | | | | | | | | 6 | | | | 19 | | | | | | | | | | | | | | | | 8 | | 3 | | 20 | | H-11 | 0505 | | 44°591 | | | | | | | | | | | | 310 | _ | | 21 H-12 2015 17 44°09' 125°29' 62.8 330 5 63.0 61.0 1024 02 8 7 8 280 1 22 - 2335 17 43°55' 125°30' 63.0 330 5 63.4 61.2 1024 02 8 7 8 280 1 24 - 1825 19 42°26' 125°32' 59.4 330 4 60.9 59.3 1023 02 6.8 3 8 280 1 25 H-14 2200 19 42°00' 125°12' 62.6 330 5 63.0 61.8 1022 02 4.6,8 6 8 290 - 25 H-14 2200 19 42°00' 125°29' 62.6 330 5 63.0 61.8 1022 02 6.8 7 7 280 - 26 - 1715 20 42°01' 125°12' 50 61.9 330 3 60.9 60.0 1023 15 6.8 6 7 290 - 27 H-15 2115 20 42°00' 127°36' 62.6 330 4 62.1 61.8 1022 50 0.8 8 4 330 - 29 H-16 0505 21 41°59' 128°06' 62.6 330 4 62.2 61.2 1023 02 6.8 7 7 330 - 29 H-16 0505 21 41°59' 128°06' 62.6 330 4 62.2 61.2 1023 02 6.8 7 7 330 - 29 H-16 0505 21 42°00' 128°49' 61.7 330 4 61.0 60.0 1023 16 0.6 7 5 330 - 30 - 1705 21 42°00' 128°49' 61.7 330 5 60.2 61.2 1023 02 6.8 7 7 330 1 31 H-17 2025 21 42°00' 128°49' 61.7 330 5 60.2 59.5 1023 50 6.8 7 7 330 1 32 H-18 0505 22 42°01' 130°30' 61.2 330 5 60.2 59.5 1023 50 6.8 7 7 330 1 33 H-19 2215 22 42°00' 132°00' 60.4 330 5 60.2 59.5 1023 50 6.8 7 7 330 1 34 - 0500 24 43°30' 132°00' 60.4 330 5 60.0 59.0 1027 02 6.8 6 8 500 1 35 H-20 1820 23 43°01' 132°00' 60.4 330 5 60.0 59.0 1027 02 6.8 6 7 0 000 1 36 - 0000 24 43°30' 132°00' 60.4 330 5 60.0 58.7 1026 02 6.8 6 7 0 000 1 37 H-21 0515 24 44°00' 132°00' 60.4 330 5 60.0 58.7 1026 02 6.8 6 7 0 000 1 38 - 1720 24 43°30' 132°00' 60.4 330 5 60.0 58.7 1026 02 6.8 6 7 0 000 1 39 H-22 0515 24 44°00' 132°00' 60.4 330 5 60.0 58.7 1026 02 6.8 6 7 0 000 1 39 H-22 0515 24 44°00' 132°00' 60.4 330 5 60.0 58.7 1026 02 6.8 6 7 0 000 1 30 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1026 02 6.8 6 7 0 000 1 31 H-21 0515 24 44°00' 132°50' 61.0 340 5 60.8 59.0 1027 02 6.8 6 7 0 000 1 31 H-22 0515 24 44°00' 132°50' 61.0 340 5 60.8 59.0 1027 02 6.8 6 7 0 000 1 320 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 20 | | 0910 | 17 | 105011 | 1 25 9 30 1 | 63.5 | 31.0 | 5 | 62.0 | 61.6 | 1002 | 00 | 8 | 2 | 8 | | _ | | 22 | 24 | | - | | | | | | 330 | 5 | 63.4 | 61.2 | | | | 7 | | | - | | 25 | | H-13 | | | | | | | | | 59.3 | | | | | | | | | 27 | 25 | H-14 | | | 42°00' | 125°29' | 62.6 | | | | 61.8 | | | | | | | - | | 28 | | - 15 | | | | | | | | | | | | 4,6,8 | 6 | 7 | | - | | 298 H-16 0505 21 41°59' 128°06' 62.6 330 4 62.2 61.2 1023 02 6,8 7 7 330 - 298 H-16 0510 21 41°59' 128°06' 62.6 330 4 62.2 61.2 1023 02 6,8 7 7 330 - 30 - 1705 21 42°00' 128°49' 61.7 330 4 61.0 60.0 1023 16 0,6 7 5 330 - 31 H-17 2025 21 42°00' 129°20' 61.5 330 5 61.2 330 5 60.2 59.5 1023 50 6,8 7 7 330 1 32 H-18 0505 22 42°01' 130°30' 61.2 330 5 60.2 59.5 1023 50 6,8 7 7 330 1 33 H-19 2215 22 42°00' 132°00' 61.0 330 5 60.3 56.7 1026 02 8 6 8 350 - 35 H-20 1820 23 43°30' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 36 - 0000 24 43°30' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 37 H-21 0515 24 44°00' 132°00' 60.4 330 4 61.0 59.0 1027 02 6 8 6 8 6 000 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 7 000 3 39 H-22 2010 24 44°00' 130°56' 60.8 340 5 60.8 59.0 1027 02 6,8 6 7 8 000 1 39 H-22 2010 24 44°00' 130°56' 60.8 340 5 60.8 59.0 1026 02 6,8 6 7 000 3 40 - 0130 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6,8 7 8 000 1 39 H-22 2010 24 44°00' 130°56' 60.8 340 5 60.8 59.0 1026 02 6,8 7 8 000 1 30 - 0130 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6,8 7 8 000 1 31 H-23 0505 25 44°01' 128°43' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 000 6 42 H-24 2110 25 44°01' 128°43' 62.2 340 8 62.0 60.4 1025 02 6 7 7 000 6 44 H-25 2015 26 44°06' 126°01' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 - | | - 17 | | | | | | | | | | | | 0.8 | | - | | 3 | | 29a H-16 0510 21 41°59' 128°06' 62.6 330 4 62.2 61.2 1023 02 6,8 7 7 330 - 30 - 1705 21 42°00' 128°49' 61.7 330 4 61.0 60.0 1023 16 0,6 7 5 330 - 31 H-17 2025 21 42°00' 129°20' 61.5 330 5 61.3 60.0 1023 25 6,8 7 7 330 1 32 H-18 0505 22 42°01' 130°30' 61.2 330 5 60.2 59.5 1023 50 6,8 7 7 330 1 33 H-19 2215 22 42°00' 132°00' 61.0 330 5 60.3 56.7 1026 02 8 6 8 350 - 35 H-20 1820 23 42°32' 132°03' 60.6 330 5 59.8 57.2 1026 02 8 6 8 350 - 35 H-20 1820 23 43°30' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 36 - 0000 24 43°30' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 37 H-21 0515 24 44°00' 132°00' 60.4 330 4 61.0 59.0 1027 02 6 7 8 000 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 7 7 000 - 37 H-21 0515 24 44°00' 132°00' 60.4 330 5 60.8 59.0 1027 02 6 7 8 000 1 39 H-22 2010 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 7 7 000 - 39 H-23 0505 25 44°01' 128°51' 61.3 340 5 60.8 59.0 1026 02 6,8 6 7 7 000 - 41 H-23 0505 25 44°01' 128°51' 61.3 340 5 60.8 59.0 1026 02 6 7 8 000 - 41 H-23 0505 25 44°01' 128°51' 61.3 340 7 60.5 59.0 1026 02 6 8 7 7 000 - 41 H-23 0505 25 44°01' 128°51' 61.3 340 7 60.5 59.0 1026 02 6 8 7 7 000 - 44 H-25 2015 26 44°06' 128°51' 63.0 340 8 62.0 60.0 1022 02 6 7 8 000 - 44 H-25 2015 26 44°06' 128°51' 61.8 330 5 61.7 59.2 1023 02 6 6 7 8 340 - | 00 | " 16 | 05.05 | - | 120501 | | | | | | | | | | | | 290 | - | | 30 - 1705 21 42°00' 128°49' 61.7 330 4 61.0 60.0 1023 16 0,6 7 5 330 - 290 1 31 H-17 2025 21 42°00' 129°20' 61.5 330 5 61.3 60.0 1023 25 6,8 7 7 330 1 32 H-18 0505 22 42°01' 130°30' 61.2 330 5 60.2 59.5 1023 50 6,8 7 7 330 1 33 H-19 2215 22 42°00' 132°00' 61.0 330 5 60.3 56.7 1026 02 8 6 8 350 - 330 - 280 - 330 1 34 - 0520 23 42°32' 132°03' 60.6 330 5 59.8 57.2 1026 02 6,8 6 8 - 330 - 330 - 290 - 35 H-20 1820 23 43°01' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 36 - 0000 24 43°30' 132°00' 60.4 330 4 61.0 59.0 1027 02 0,6,8 7 8 000 1 37 H-21 0515 24 44°00' 132°00' 60.4 330 4 59.6 58.3 1027 02 6 7 7 000 - 290 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 8 6 000 - 300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | · | | 280 | _ | | 31 H-17 2025 21 42°00' 129°20' 61.5 330 | | H-16 | | | | | | | | | | _ | | | | | 280 | - | | 32 H-18 0505 22 42°01' 130°30' 61.2 330 5 60.2 59.5 1023 50 6,8 7 7 330 1 260 - 280 -
280 - 280 | 30 | - | 1705 | 21 | | | 61.7 | 330 | 4 | 61.0 | 60.0 | 1023 | 16 | 0,6 | 7 | 5 | | | | 33 H-19 2215 22 42°00' 132°00' 61.0 330 5 60.3 56.7 1026 02 8 6 8 350 - 330 - 334 - 0520 23 42°32' 132°03' 60.6 330 5 59.8 57.2 1026 02 6,8 6 8 - 35 H-20 1820 23 43°30' 132°02' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 36 - 0000 24 43°30' 132°02' 60.3 330 4 61.0 59.0 1027 02 0,6,8 7 8 000 1 37 H-21 0515 24 44°00' 132°00' 60.4 330 4 59.6 58.3 1027 02 6 7 8 000 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 59.6 58.3 1027 02 6 8 6 000 - 390 1 39 H-22 2010 24 44°00' 132°00' 60.8 340 5 60.0 58.7 1028 02 6 8 6 7 000 3 40 - 0130 25 43°88' 130°20' 61.0 340 5 60.8 59.0 1026 02 6 7 8 000 - 41 H-23 0505 25 44°01' 128°41' 61.3 340 7 60.5 59.0 1026 02 6 7 8 000 - 41 H-23 0505 25 44°01' 128°41' 61.3 340 7 60.5 59.0 1026 02 6 8 7 7 000 - 42 H-24 2110 25 44°01' 128°41' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 340 7 43 - 0440 26 44°06' 128°52' 63.0 340 8 62.0 60.4 1025 02 6 7 8 340 - 44 H-25 2015 26 44°06' 128°52' 63.0 340 8 62.0 60.0 1022 02 6 7 8 340 - 44 H-25 2015 26 44°06' 128°52' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 - | 31 | H-17 | 2025 | 21 | 42°00' | 129°20' | 61.5 | 330 | > | 61.3 | 60.0 | 1023 | 25 | 6,8 | 7 | 7 | | 1 - | | 33 H-19 2215 22 42°00' 132°00' 61.0 330 5 60.3 56.7 1026 02 8 6 8 350 - 330 - 290 - 330 - 290 - 335 H-20 1820 23 43°01' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 290 1 36 | 32 | н-18 | 0505 | 22 | 42°01' | 130°30' | 61.2 | 330 | 5 | 60.2 | 59.5 | 1023 | 50 | 6,8 | 7 | 7 | | | | 34 - 0520 23 42°32' 132°03' 60.6 330 5 59.8 57.2 1026 02 6,8 6 8 35 H-20 1820 23 43°01' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 290 1 36 | 33 | H-19 | 2215 | 55 | 42°001 | 132°00' | 61.0 | 330 | 5 | 60.3 | 56.7 | 1026 | 02 | 8 | 6 | 8 | 350 | - | | 34 - 0520 23 | 36 - 0000 24 43°30' 132°02' 60.3 330 4 61.0 59.0 1027 02 6 7 7 000 - 37 H-21 0515 24 44°00' 132°00' 60.4 330 4 59.6 58.3 1027 02 6 7 8 000 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 000 - 39 H-22 2010 24 44°00' 130°56' 60.8 340 5 60.0 58.7 1028 02 6,8 6 7 000 3 40 - 0130 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6,8 6 7 000 3 41 H-23 0505 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6,8 7 7 000 6 42 B-24 2110 25 44°01' 128°43' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 340 7 43 - 0440 26 44°06' 127°52' 63.0 340 8 62.0 60.0 1022 02 6 7 8 340 7 44 H-25 2015 26 44°06' 126°01' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 - | | - | | | | | | 330 | 5 | | 57.2 | 1026 | 05 | 6,8 | | | | - | | 36 - 0000 24 43°30' 132°02' 60.3 330 4 61.0 59.0 1027 02 6 7 7 000 - 37 H-21 0515 24 44°00' 132°00' 60.4 330 4 59.6 58.3 1027 02 6 7 8 000 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 000 - 39 H-22 2010 24 44°00' 130°56' 60.8 340 5 60.0 58.7 1027 02 6,8 6 7 000 3 40 - 0130 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6,8 6 7 000 3 41 H-23 0505 25 44°01' 128°51' 61.3 340 7 60.5 59.0 1026 02 6,8 7 7 000 6 42 H-24 2110 25 44°01' 128°41' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 340 7 43 - 0440 26 44°06' 127°52' 63.0 340 8 62.0 60.0 1022 02 6 7 8 340 7 44 H-25 2015 26 44°06' 126°01' 60.8 330 8 62.0 60.0 1022 02 6 7 8 340 7 | 35 | H-20 | 1820 | 23 | 43°01' | 132°00' | 60.4 | 330 | 5 | 60.0 | 59.0 | 1027 | 02 | 0,6,8 | 7 | 8 | | _ | | 37 H-21 0515 24 44°00' 132°00' 60.4 330 4 59.6 58.3 1027 02 6 7 8 000 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 000 - 39 H-22 2010 24 44°00' 130°56' 60.8 340 5 60.0 58.7 1027 02 6,8 6 7 000 3 40 - 0130 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6 7 8 000 - 41 H-23 0505 25 44°01' 129°51' 61.3 340 7 60.5 59.0 1026 02 6,8 7 7 000 6 42 H-24 2110 25 44°01' 126°43' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 340 7 43 - 0440 26 44°06' 127°52' 63.0 340 8 62.0 60.0 1022 02 6 7 7 8 340 7 44 H-25 2015 26 44°06' 126°01' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 - | 36 | - | 0000 | 24 | 43°30' | 132°02' | 60.3 | 330 | 4 | 61.0 | 59.0 | 1027 | 02 | 6 | 7 | 7 | 000 | <u> </u> | | 38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 00 - 330 | 3 7 | H-21 | 0515 | 24 | 144°00° | 132°00' | 60.4 | 330 | 4 | 59.6 | 58.3 | 1027 | 02 | 6 | 7 | 8 | 000 | 1 | | 39 | 38 | - | 1720 | 24 | 43°591 | 131°19' | 60.8 | 330 | 4 | 60.0 | 58.7 | 1028 | 02 | 6 | 8 | 6 | 000 | _ | | 40 - 0130 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6 7 8 000 - 41 H-23 0505 25 44°01' 129°51' 61.3 340 7 60.5 59.0 1026 02 6,8 7 7 000 6 42 H-24 2110 25 44°01' 128°43' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 340 7 43 - 0440 26 44°06' 127°52' 63.0 340 8 62.0 60.0 1022 02 6 7 7 000 - 44 H-25 2015 26 44°06' 126°01' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 - | 39 | H-22 | 2010 | 24 | | 130°56' | 60.8 | 340 | 5 | 60.0 | 58.7 | 1027 | 02 | 6,8 | 6 | 7 | | | | 42 B-24 2110 25 44°01' 128°43' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 340 7 43 - 0440 26 44°06' 127°52' 63.0 340 8 62.0 60.0 1022 02 6 7 7 000 - 44 B-25 2015 26 44°06' 126°01' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 - | | - | | | | | | | 5 | | 59.0 | 1026 | 02 | 6 | 7 | | 000 | - | | 43 - 0440 26 44°06' 127°52' 63.0 340 8 62.0 60.0 1022 02 6 7 7 000 - 44 H-25 2015 26 44°06' 126°01' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 - | | | | | | 128°43' | | | | | | | | 6,8 | | | | | | | 43 | - | 0440 | 26 | 44°06' | 127°52' | 63.0 | 340 | 8 | 62.0 | 60.0 | 1022 | 02 | 6 | 7 | 7 | 000 | - | | | this | H-25 | 2015 | 26 | 44°06° | 126°01' | 60.8 | 330 | 5 | 61.7 | 59.2 | 1023 | 02 | 6 | 7 | 8 | | - | TABLE 4.--Solar radiation measurements | | Date (July | Calculated
length of day | Insolation (gcal./cm. ²) | | | | | | | | |---|------------|-----------------------------|--------------------------------------|-------|-------|--|--|--|--|--| | ı | 1961) | (hours) | .AM | PM | Total | 11 | 15.7 | 328 | 390 | 718 | | | | | | | | 12 | 15.7 | 317 | 374 | 691 | | | | | | | | 13 | 15.5 | 150 | 159 | 309 | | | | | | | | 14 | 15.5 | (151) | 149 | (300) | | | | | | | | 15 | 15.4 | 182 | 147 | 329 | | | | | | | | 16 | 15.2 | (180) | (254) | (434) | | | | | | | | 17 | 15.1 | (275) | 252 | (527) | | | | | | | | 18 | 15.0 | 368 | 380 | 748 | | | | | | | | 19 | 14.8 | (203) | 255 | (458) | | | | | | | | 20 | 14.8 | 264 | 294 | 558 | | | | | | | | 21 | 14.7 | 203 | 236 | 439 | | | | | | | | 22 | 14.7 | 199 | 345 | 544 | | | | | | | | 23 | 14.8 | 249 | 217 | 466 | | | | | | | | 24 | 14.9 | (249) | (249) | (498) | | | | | | | | 25 | 14.9 | 182 | 253 | 435 | | | | | | | | 26 | 14.8 | 121 | 159 | 280 | | | | | | TABLE 5.--Surface C¹⁴ productivity observations | Station | Date
(July | Time Incubation (PST) (hours) | | Productivity replicates (mg.C/m.3/day) | | | | | | |-------------|---------------|-------------------------------|---------|--|--------|--------|---------|--|--| | | 1961) | (FOI) | (Hours) | 1. | 2 | 3 | Average | | | | P-1 | 11 | 1235 | 5.8 | 9.62 | 8.93 | 6.20 | 8.25 | | | | P-6 | 14 | 1245 | 7.2 | 1.66 | 1.99 | 1.82 | 1.82 | | | | P-7 | 15 | 0500 | , | 1.00 | | 1.02 | | | | | P-8 | | | 7.5 | - | 4.23 | | 4.23 | | | | | 15 | 1315 | 7.1 | 6.62 | - | 5.94 | 6.28 | | | | P- 9 | 16 | 0525 | 7.2 | - | 4.85 | 6.41 | 5.63 | | | | P-10 | 16 | 1240 | 7.5 | 1.03 | 1.44 | 1.82 | 1.43 | | |
 P-11 | 17 | 0500 | 7.3 | 3.97 | (1.66) | 2.91 | 3.44 | | | | P-12 | 17 | 1240 | 7.5 | 3.13 | 3.56 | (5.30) | 3.34 | | | | P-13 | 18 | 0530 | 6.9 | 4.67 | - | 6.33 | 5.50 | | | | P-14 | 19 | 1230 | 7.3 | 2.58 | 3.60 | - | 3.09 | | | | P-15 | 20 | 0505 | 7.1 | _ | 4.81 | - | 4.81 | | | | P-17 | 21 | 0520 | 7.0 | 5.41 | - | - | 5.41 | | | | P-20 | 22 | 1240 | 7.5 | 1.06 | 1.36 | - | 1.21 | | | | P-21 | 23 | 0510 | 7.5 | 1.52 | 1.83 | - | 1.67 | | | | P-22 | 23 | 1240 | 7.5 | 2.23 | 2.62 | - | 2.43 | | | | P-23 | 24 | 0520 | 7.5 | 3.75 | 4.88 | - | 4.31 | | | | P-24 | 24 | 1310 | 7.5 | 1.93 | 2.83 | - | 2.38 | | | | P-25 | 25 | 0520 | 7.1 | 7.35 | - | - | 7.35 | | | | P-26 | 25 | 1240 | 8.1 | 2.20 | 4.65 | - | 3.42 | | | | P-27 | 26 | 0535 | 7.0 | 4.78 | 6.29 | _ | 5.53 | | | | P-28 | 26 | 1320 | 6.9 | 5.83 | 8.33 | - | 7.08 | | | TABLE 6.--Surface chlorophyll $\underline{\mathbf{a}}$ measurements | Station | Date
(July | Time (PST) | Sample
volumes | Chlorophyll a replicates (mg./m.3) | | | | | | | |-------------|---------------|------------|-------------------|------------------------------------|--------|---------|---------|--|--|--| | L | 1961) | (101) | (1. each) | 1 | 2 | 3 | Average | | | | | P-1 | 11 | 1235 | 3.0 | 0.13 | 0.23 | - | 0.18 | | | | | P-2 | 12 | 0435 | 3.0 | 0.12 | 0.08 | 0.11 | 0.10 | | | | | P-3 | 12 | 1445 | 3.0 | 0.10 | 0.11 | 0.10 | 0.10 | | | | | P-4 | 13 | 1335 | 3.0 | 0.19 | (0.07) | 0.23 | 0.21 | | | | | P-5 | 14 | 0500 | 2.0 | 0.09 | 0.04 | 0.11 | 0.08 | | | | | P-6 | 14 | 1245 | 2.0 | 0.06 | 0.09 | 0.09 | 0.08 | | | | | P-7 | 15 | 0600 | 2.0 | 0.21 | 0.22 | 0.24 | 0.22 | | | | | P- 8 | 15 | 1300 | 2.0 | 0.18 | 0.19 | 0.16 | 0.18 | | | | | P- 9 | 16 | 0525 | 2.0 | 0.19 | (0.26) | 0.20 | 0.19 | | | | | P-10 | 16 | 1240 | 2.0 | 0.12 | (0.22) | 0.15 | 0.13 | | | | | P-11 | 17 | 0500 | 2.0 | 0.17 | 0.11 | 0.14 | 0.14 | | | | | P-12 | 17 | 1240 | 2.0 | 0.21 | (0.11) | 0.20 | 0.21 | | | | | P-13 | 18 | 0530 | 2.0 | (0.17) | 0.21 | 0.19 | 0.20 | | | | | P-13A | 18 | 1250 | 2.0 | 0.16 | (0.26) | 0.19 | 0.17 | | | | | P-14 | 19 | 1230 | 2.0 | 0.08 | 0.05 | 0.10 | 0.08 | | | | | P-15 | 20 | 0505 | 2.0 | 0.10 | 0.13 | 0.13 | 0.12 | | | | | P-17 | 21 | 0520 | 2.0 | 0.16 | 0.17 | (0.11) | 0.16 | | | | | P-18 | 21 | 1245 | 2.0 | 0.06 | 0.06 | (0.10) | 0.06 | | | | | P-19 | 22 | 0515 | 2.0 | 0.08 | 0.10 | 0.09 | 0.09 | | | | | P-20 | 22 | 1240 | 2.0 | 0.07 | 0.05 | *0.05 | 0.06 | | | | | P-21 | 23 | 0510 | 2.0 | 0.10 | 0.07 | *0.08 | 0.08 | | | | | P-22 | 23 | 1240 | 2.0 | (0.15) | 0.12 | *0.10 | 0.11 | | | | | P-23 | 24 | 0520 | 2.0 | 0.11 | 0.12 | *0.07 | 0.10 | | | | | P-24 | 24 | 1315 | 2.0 | 0.09 | 0.10 | *0.11 | 0.10 | | | | | P-25 | 25 | 0520 | 2.0 | 0.09 | 0.13 | *0.11 | 0.11 | | | | | P-26 | 25 | 1240 | 2.0 | 0.17 | 0.17 | *(0.11) | 0.17 | | | | | P-27 | 26 | 0535 | 2.0 | 0.28 | 0.24 | *0.29 | 0.27 | | | | | P-28 | 26 | 1320 | 2.0 | 0.19 | 0.14 | *0.15 | 0.16 | | | | *Taken from separate bucket of water obtained up to 1/4 nautical mile from the first two (1 and 2). TABLE 7.--Zooplankton collection data | Station | | | | | | | | | | | | |---------|--------------------------|---|---|--|---|---|---|---|--|--|--| | P-3 | P-6 | P-8 | P-10 | P-12 | H-14 | P-16 | P-18 | H-19 | H-20 | | | | | | | | | | | | | | | | | 12 | 14 | 15 | 16 | 17 | 19 | 20 | 21 | 22 | 23 | | | | 1258 | 1230 | 1217 | 1214 | 1200 | 1342 | 1207 | 1206 | 1403 | 1148 | | | | 220 | 120 | 120 | 120 | 130 | 135 | 135 | 135 | 135 | 135 | | | | 950 | 300 | 380 | 370 | 510 | 790 | 530 | 520 | 500 | 510 | | | | | | | | | | | | | | | | | 64 | 13 | 528 | 43 | 58 | 43 | 22 | 11 | 250 | 52 | | | | | | | | | | | | | | | | | 67 | 43 | 1389 | 116 | 114 | 54 | 42 | 21 | 500 | 102 | | | | | 12
1258
220
950 | 12 14
1258 1230
220 120
950 300
64 13 | 12 14 15
1258 1230 1217
220 120 120
950 300 380
64 13 528 | 12 14 15 16 1258 1230 1217 1214 220 120 120 120 950 300 380 370 64 13 528 43 | P-3 P-6 P-8 P-10 P-12 12 14 15 16 17 1258 1230 1217 1214 1200 220 120 120 120 130 950 300 380 370 510 64 13 528 43 58 | P-3 P-6 P-8 P-10 P-12 H-14 12 14 15 16 17 19 1258 1230 1217 1214 1200 1342 220 120 120 120 130 135 950 300 380 370 510 790 64 13 528 43 58 43 | P-3 P-6 P-8 P-10 P-12 H-14 P-16 12 14 15 16 17 19 20 1258 1230 1217 1214 1200 1342 1207 220 120 120 120 130 135 135 950 300 380 370 510 790 530 64 13 528 43 58 43 22 | P-3 P-6 P-8 P-10 P-12 H-14 P-16 P-18 12 14 15 16 17 19 20 21 1258 1230 1217 1214 1200 1342 1207 1206 220 120 120 120 130 135 135 135 950 300 380 370 510 790 530 520 64 13 528 43 58 43 22 11 | P-3 P-6 P-8 P-10 P-12 H-14 P-16 P-18 H-19 12 14 15 16 17 19 20 21 22 1258 1230 1217 1214 1200 1342 1207 1206 1403 220 120 120 130 135 135 135 135 950 300 380 370 510 790 530 520 500 64 13 528 43 58 43 22 11 250 | | | TABLE 8. Relative abundance of zooplankton organisms [Symbola: D = dominant, C = common, F = few, T = trace] | | Stations | | | | | | | | | | | |---|----------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--| | Organisms | D 2 | P-6 | 1 20 | 7.10 | | | | | | | | | | P-3 | P-6 | P-8 | P-10 | P-12 | H-14 | P-16 | P-18 | H-19 | H-50 | | | Fish eggs | T | т | F | F | F | T | _ | _ | F | F | | | Fish larvae (myctophids) | Ť | F | F | F | F | F | F | T | T | - | | | Appendicularia | | | | | | | | | | | | | Oikopleura spp. | T | F | - | T | T | F | - | _ | т | F | | | Thaliacea | | | | | | | | | | | | | Salpa (fusiformis) | - | - | D | D | D | - | ** | - | _ | _ | | | Doliolidae | - | - | - | F | - | F | - | - | D | D | | | Pteropoda | | | | | | | | | | | | | Limacina helicina | F | - | - | F | F | F | T | - | F | F | | | Limacina sp. Clione (limacina) | -
F | - | - | - | - | - | - | - | F | - | | | Euclio sp. | - | _ | -
F | _ | _ | _ | | _ | _ | _ | | | Heteropoda | | | | | | | | | _ | _ | | | Atlanta (peroni) | _ | _ | - | F | _ | _ | _ | _ | F | F | | | Cephalopoda | T(egg) | | т | T | т | | | | | | | | | T(CRR) | - | 1 | T | т | - | - | - | T | T | | | Echinodermata
Ophiopluteii | 89 | _ | _ | | T | | | | | | | | | | - | - | - | 1 | - | - | - | - | - | | | Amphipoda
gammarid | _ | _ | F | F | F | т | | | m | | | | hyperiid | | | r | F | F | 1 | - | - | T | - | | | Parathemisto pacifica | F | C | F | F | F | C | C | F | F | F | | | Phronema sp. | - | - | F | - | - | F | - | F | F | T | | | Streetsia sp. *Type I | -
F | _ | F | _ | T
T | _ | T | ~ | F
- | F
F | | | *Type II | _ | - | - | | _ | _ | T | F | T | F | | | *Type III | - | - | T | - | - | - | ~ | - | _ | F | | | *Type IV | - | - | F | - | T | T | T | T | - | - | | | *Type V | - | - | - | - | - | - | - | T | - | - | | | Cirripedia
Lepas nauplii, cyprids | | | | | | m | | m | m | | | | | - | | - | - | - | T | - | T | T | - | | | Copepoda
Acartia longiremis | | | | | | m | | m | | | | | Aetidius armatus | -
F | _ | -
F | - | _ | T
- | F | T
- | | _ | | | Calanus cristatus | C | - | F | _ | F | F | F | - | F | _ | | | C. tonsus | C | F | F | T | T | F | C | T | F | T | | | C. finmarchicus s.l.
Candacia bipinnata | С | C | F | F | C | - | F | - | F | F | | | C. catula | - | _ | F
- | T | _ | _ | T
F | _ | F
F | F
F | | | Centropages (abdominalis) | | _
 - | _ | Т | _ | _ | - | _ | - | | | Clausocalanus arcuicornis | - | - | - | - | - | - | - | - | F | C | | | Corycaeus s.p. Eucalanus bungii bungii | F
C | c | -
F | - | -
F | - | - | - | T | - | | | E. bungii californicus | - | C | - | c | - | c | C | F | c | c | | | E. elongatus hyalinus | - | ~ | •• | - | _ | _ | F | - | Č | Č | | | Euchaeta (japonica) | F | T | - | F | F | F | F | T | T | - | | | Euchirella bella | F | - | 73 | F | F | T | F | F | - | - | | | Heterorhabdus papilliger
Mecynocera clausi | F
F | T
C | F
F | T
F | F
F | T
C | F
F | -
F | T
- | T
- | | | Metridia lucens | F | F | _ | F | C | F | c | F | _ | T | | | Microcalanus sp. | F | C | F | F | F | C | F | C | F | F | | | Oithona plumifera O. (similis) | F | F
T | F | F
T | Т | F | F | - | T | T | | | 0. (SIMITIE)
0. sp. | - | -
- | _ | -
- | - | _ | _ | T | - | - | | | Oncaea sp. | - | - | - | - | F | _ | F | _ | F | F | | | Paracalanus parvus | - | C | F | F | - | C | F | C | F | - | | | Rhincalanus nasutus Scolecithricella minor | -
F | •• | - | T | -
m | - | ~ | - | - | - | | | parasitic copepods | <u>r</u> | _ | - | F
- | T
- | _ | - | _ | F
T | - | | | copepod eggs | C | - | F | - | F | F | T | - | Ť | - | | | copepod nauplii | F | - | - | F | - | - | - | - | - | - | | | | | | | | | | | | | | | TABLE 8.--Relative abundance of zooplankton organisms--Continued [Symbols: D = dominant, C = common, F = few, T = trace] | Organisms | | | | | Sta | tions | | | | | |---------------------------------------|-----|-----|--------|------|------|-------|------|------|------|------| | Organiamo | P-3 | P-6 | P-8 | P-10 | P-12 | H-14 | P-16 | P-18 | H-19 | H-20 | | | | | | | | | | | | | | Euphausiacea | | | | | | | | | | F | | Nematoscelis difficilis | T | - | - | T | - | - | - | T | - | r | | Stylocheiron sp. Thysanoessa longipes | T | F | -
F | F | F | F | F | F | F | F | | calyptopis (unidentified) | F | F | F | _ | - | _ | _ | - | _ | F | | furcilia " | - | F | F | F | F | _ | _ | T | _ | Ť | | | | - | • | • | - | | | | | _ | | Ostracoda | T | | | F | F | _ | T | F | т | | | Conchoecia (elegans) C. (daphnoides) | T | _ | _ | - | | _ | Ī | _ | T | _ | | C. (daphnordes) | - | T | _ | | _ | _ | _ | _ | _ | _ | | C. (daphnoides) C. (haddoni) C. sp. | T | | _ | _ | F | F | _ | _ | _ | _ | | _ | | | | _ | - | _ | _ | | | _ | | decapod larvae (miscellaneous) | T | - | T | T | - | T | F | - | T | F | | Polycheata | | | | | | | | | | | | Tomopteris sp. | - | - | F | T | T | - | - | F | F | C | | Alciopidae | - | - | - | - | - | - | - | - | - | F | | Chaetognatha | | | | | | | | | | | | Sagitta elegans | C | C | _ | _ | _ | - | C | - | - | - | | S. scrippsae | F | F | F | F | F | D | D | C | F | C | | S. decipiens | - | - | - | - | - | - | - | - | - | C | | S. tenuis | - | - | F | C | F | C | C | - | - | - | | S. neglecta | - | - | - | - | - | - | - | C | _ | - | | S. sp. | - | - | - | - | | - | - | C | F | - | | Eukrohnia hamata | C | F | - | F | T | - | - | - | - | - | | Ctenophora | T | - | F | F | C | - | - | - | - | - | | Siphonophora | - | F | C | C | C | - | - | - | F | C | | Hydromedusae | F | C | F | F | F | F | F | - | F | C | | Radiolaria | F | F | F | F | F | F | F | D | F | C | ^{*}Unidentified hyperiid amphipods. TABLE 9.--Albacore trolling results | Date (July | Tr | olled between | en positio | ns | Time
start | Time
stop | Total | Lines | Number | of fish | | |------------|---------|---------------|-----------------|------------------------|---------------|--------------|---------|---------------------|--------|---------|----------| | 1961) | Lat. N. | Long. W. | Lat. N. | Long. W. | (PST) | (PST) | (hours) | fished | caught | tagged | observed | | 11 | 47*45' | 125°22' | 4 7°4 5' | 127°35' | 0730 | 2045 | 12.0 | 7 | - | - | *** | | 12 | 47° 44' | 128°071 | 47° 47 ' | 129°56' | 0815 | 2040 | 12.0 | 7 | - | - | - | | 13 | 47° 441 | 130°27' | 46° 00 ¹ | 130°25' | 0520 | 2010 | 12.5 | 7 | - | - | - | | 14 | 45°521 | 130°301 | 45° 581 | 128°10' | 0515 | 2000 | 12.2 | 7 | 1 | - | - | | 15 | 45°581 | 128°10' | 46°00° | 125°54' | 0620 | 2030 | 12.1 | $7/8^{\frac{1}{2}}$ | - | - | - | | 16 | 45°561 | 125°57' | 44°591 | 125°29' | 0640 | 2030 | 10.8 | 7, | | - | - | | 17 | 44°571 | 125°31' | 43°18' | 125°32' | 0600 | 2030 | 14.3 | 7/8 ¹ / | | - | - | | 18 | 42°571 | 125°31' | 42°57' | 125°31' ² / | 1130 | 2030 | 9.0 | 7, | 1 | - | 1 | | 19 | 43°051 | 125°30' | 42°001 | 126°04' | 0440 | 2030 | 13.2 | 7/81/ | 21 | - | 7 | | 20 | 41°55' | 126°06' | 42°001 | 128°03' | 0430 | 2030 | 15.2 | 8 | 1 | - | - | | 21 | 41°56' | 128°06' | 42° 00 1 | 130°22' | 0445 | 2035 | 13.5 | 8 | 2 | - | - | | 22 | 41°59' | 130°33' | 42°301 | 132°02' | 0500 | 2050 | 14.0 | 8 | 3 | - | 2 | | 23 | 42°281 | 132°03' | 44°001 | 132°00' | 0515 | 2050 | 13.8 | 8 | 2 | - | - | | 24 | 44°001 | 132°001 | 44°00 ° | 129°52' | 0500 | 2040 | 13.7 | 8 , | - | - | - | | 25 | 43°541 | 129°46' | 44° 04 1 | 12 7° 55' | 0500 | 2035 | 14.1 | 6/8 ¹ / | 7 | - | 8 | | 26 | 44°07' | 126°48' | 44°13' | 125°22' | 0500 | 2015 | 13.5 | 5 | 16 | 6 | 5 | | Tota | ls | | | | | • • • | 206 | | 54 | 6 | 23 | $[\]frac{1}{2}$ Line(s) added during fishing period. TABLE 10.--Gill net results | Date (July | Pos | ltion | Time
set | Time
hauled | Total
hours | Catch | |------------|---------|----------|-------------|----------------|----------------|--| | | Lat. N. | Long. W. | (PST) | (PST) | fished | | | 11 | 47°45' | 127°35' | 2120 | 0540 | 8.4 | 6 sharks, 2 anchovies | | 14 | 45°58' | 128°10' | 2018 | 0600 | 9.7 | 1 shark, 3 scad, | | | | | | | | 2 albacore, 1 bluefin | | 15 | 46°001 | 125°53' | 2045 | 0610 | 9.4 | 19 sharks, 11 scad | | 16 | 44°591 | 125°30' | 2045 | 0540 | 9.0 | 10 sharks, 4 scad | | Total | .5 | | | | 36.5 | 36 sharks, 18 scad,
2 anchovies,
2 albacore, 1 bluefin | MS #1255 6P0 936-771 $^{2/}_{\rm Within}$ a 10-nautical mile square during trolling period. Created in 1849, the U.S. Department of the Interior is concerned with the management, conservation, and development of the Nation's water, fish, wildlife, mineral, forest, and park and recreational resources. It also has major responsibilities for Indian and Territorial affairs. As the Nation's principal conservation agency, the Department works to assure that nonrenewable resources are developed and used wisely, that park and recreational resources are conserved for the future, and that renewable resources make their full contribution to the progress, prosperity, and security of the United States—now and in the future.